专题18二次函数与旋转变换综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 18 二次 函数 旋转 变换 综合 问题 挑战 2023 年中 数学 压轴 秘笈 揭秘 全国 通用 原卷版
- 资源描述:
-
1、挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用) 专题18二次函数与旋转变换综合问题【例1】(2022凉山州)在平面直角坐标系xOy中,已知抛物线yx2+bx+c经过点A(1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90,点C落在抛物线上的点P处(1)求抛物线的解析式;(2)求点P的坐标;(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由【例2】(2022梧州)如图,在平面直角坐标系中,直线yx4分别与x,y轴交于点A,B,抛
2、物线yx2+bx+c恰好经过这两点(1)求此抛物线的解析式;(2)若点C的坐标是(0,6),将ACO绕着点C逆时针旋转90得到ECF,点A的对应点是点E写出点E的坐标,并判断点E是否在此抛物线上;若点P是y轴上的任一点,求BP+EP取最小值时,点P的坐标【例3】(2022辽宁)如图,抛物线yax23x+c与x轴交于A(4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45得到射线OP,OP交直线AC于点F,连接DF(1)求抛物线的解析式;(2)当点D在第二象限且时,求点D的坐标;(3)当ODF为直角三角形时,请直接写出
3、点D的坐标【例4】(2022河池)在平面直角坐标系中,抛物线L1:yax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3)(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EFx轴于点F,设EFm,问:当m为何值时,BFE与DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180得抛物线L2,其中C,D两点的对称点分别记作M,N问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由一解答题(共20小题)1(
4、2022碑林区校级三模)如图,在平面直角坐标系中,抛物线W1与x轴交于A,B两点,与y轴交于点C(0,6),顶点为D(2,2)(1)求抛物线W1的表达式;(2)将抛物线W1绕原点O旋转180得到抛物线W2,抛物线W2的顶点为D,在抛物线W2上是否存在点M,使SDADSDDM?若存在,请求出点M的坐标;若不存在,请说明理由2(2022双流区模拟)如图,抛物线C:yax2+6ax+9a8与x轴相交于A,B两点(点A在点B的左侧),已知点B的横坐标是2,抛物线C的顶点为D(1)求a的值及顶点D的坐标;(2)点P是x轴正半轴上一点,将抛物线C绕点P旋转180后得到抛物线C1,记抛物线C1的顶点为E,抛
5、物线C1与x轴的交点为F,G(点F在点G的右侧)当点P与点B重合时(如图1),求抛物线C1的表达式;(3)如图2,在(2)的条件下,从A,B,D中任取一点,E,F,G中任取两点,若以取出的三点为顶点能构成直角三角形,我们就称抛物线C1为抛物线C的“勾股伴随同类函数”当抛物线C1是抛物线C的勾股伴随同类函数时,求点P的坐标3(2022灞桥区校级模拟)已知:如图,在平面直角坐标系xOy中,直线yx+6与x轴、y轴的交点分别为A、B,其中点C是x轴上一点,OC3(1)求过A、B、C三点的抛物线L的解析式;(2)将抛物线L绕着点O旋转180得到抛物线L1,抛物线L1与x轴交于F点、E点(点F在点E的左
6、侧),与y轴交于点M,则抛物线L1的对称轴上是否存在一点Q,使|QFQM|的值最大?若存在,求出点Q的坐标及其最大值,若不存在,请说明理由4(2022莲湖区二模)已知抛物线W1:yax2bx3与x轴交于A(1,0)、B(3,0)两点与y轴交于点C,顶点为D(1)求抛物线W1的表达式;(2)将抛物线W1绕原点O旋转180后得到抛物线W2,W2的顶点为D,点M为W2上的一点,当DDM的面积等于ABC的面积时,求点M的坐标5(2022深圳三模)已知抛物线yax2+c过点A(2,0)和D(1,3)两点,交x轴于另一点B(1)求抛物线解析式;(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD
7、,当BD平分ADP时,求P点坐标;(3)将抛物线图象绕原点O顺时针旋转90形成如图2的“心形”图案,其中点M,N分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点直线EF的解析式是 ;点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是 6(2022无锡二模)二次函数yax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(1,0)、B(4,0)(1)求此二次函数的表达式;(2)如图1,抛物线的对称轴m与x轴交于点E,CDm,垂足为D,点F(,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与FEN相似,求点N的坐标;如图2,点M
8、在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45,交抛物线于点P,求点P的坐标;(3)已知Q在y轴上,T为二次函数对称轴上一点,且QOT为等腰三角形,若符合条件的Q恰好有2个,直接写出T的坐标7(2022沙湾区模拟)如图,抛物线f(x):ya(x+1)(x5)与x轴交于点A、B(点A位于点B左边),与y轴交于点C(0,(1)求抛物线f(x)的解析式;(2)作点C关于x轴的对称点C,连接线段AC,作CAB的平分线AE交抛物线于点E,将抛物线f(x)沿对称轴向下平移经过点C得到抛物线f(x)在射线AE上取点F,连接FC,将射线FC绕点F逆时针旋转120交抛物线f(x)于点P当ACF为
9、等腰三角形时,求点P的横坐标8(2022灌南县二模)如图,抛物线yax2+bx+3经过点A(1,0),B(3,0)两点,与y轴交于点C,其顶点为M,连接MA,MC,AC,过点C作y轴的垂线l(1)求该抛物线的表达式;(2)直线l上是否存在点N,使得SMBN2SMAC?若存在,求出点N的坐标;若不存在,请说明理由(3)如图2,若将原抛物线绕点C逆时针旋转45,求新抛物线与y轴交点P坐标9(2022红花岗区三模)如图(1),ABC中,ACBC6,C90,点P在线段AC上,从C点向A点运动,PBE90,BPBE,PE交BC于点D,完成下列问题:(1)点E到BC边的距离为 ;若CDx,BDE的面积为S
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-832955.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
