专题21 运用空间向量解决空间角(教师版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题21 运用空间向量解决空间角教师版 专题 21 运用 空间 向量 解决 教师版
- 资源描述:
-
1、专题21 运用空间向量解决空间角一、题型选讲题型一 、异面直线所成的角以及研究异面直线所成的角首先要注意交的范围,然后转化为有直线的方向向量的夹角。例1、【2018年高考江苏卷】如图,在正三棱柱ABCA1B1C1中,AB=AA1=2,点P,Q分别为A1B1,BC的中点(1)求异面直线BP与AC1所成角的余弦值;(2)求直线CC1与平面AQC1所成角的正弦值【答案】(1);(2)【解析】如图,在正三棱柱ABCA1B1C1中,设AC,A1C1的中点分别为O,O1,则OBOC,OO1OC,OO1OB,以为基底,建立空间直角坐标系Oxyz因为AB=AA1=2,所以(1)因为P为A1B1的中点,所以,从
2、而,故因此,异面直线BP与AC1所成角的余弦值为(2)因为Q为BC的中点,所以,因此,设n=(x,y,z)为平面AQC1的一个法向量,则即不妨取,设直线CC1与平面AQC1所成角为,则,所以直线CC1与平面AQC1所成角的正弦值为例2、(2019南京学情调研) 如图,在正四棱柱ABCDA1B1C1D1中,已知底面ABCD的边长AB3,侧棱AA12,E是棱CC1的中点,点F满足2.(1) 求异面直线FE和DB1所成角的余弦值;(2) 记二面角EB1FA的大小为,求|cos|. 规范解答 在正四棱柱ABCDA1B1C1D1中,以,为正交基底,建立如图所示的空间直角坐标系Dxyz.因为AB3,AA1
3、2,E是CC1的中点,2,所以E(0,3,1),F(3,2,0),B1(3,3,2). (2分)(1)从而(3,1,1),(3,3,2)设异面直线FE和DB1所成的角为,则cos|cos,|.因此,异面直线FE和DB1所成角的余弦值为. (5分)(2)设平面B1FE的法向量为n1(x,y,z)因为(3,1,1),(0,1,2),由得 所以取z3,则平面B1FE的一个法向量为n1(1,6,3)(8分)又因为平面AB1F的一个法向量为n2(1,0,0),所以cosn1,n2.因此|cos| cosn1,n2|. (10分)题型二、直线与平面所成的角直线与平面所成的角是通过研究直线的方向向量和平面的
4、法向量的所成的角,因此,要特别注意所求的角与已求的角之间的关系。例3、【2020年高考浙江】如图,在三棱台ABCDEF中,平面ACFD平面ABC,ACB=ACD=45,DC =2BC()证明:EFDB;()求直线DF与平面DBC所成角的正弦值【解析】()如图,过点D作,交直线AC于点,连结OB由,得,由平面ACFD平面ABC得DO平面ABC,所以.由,得.所以BC平面BDO,故BCDB由三棱台得,所以.()方法一:过点作,交直线BD于点,连结.由三棱台得,所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角.由平面得,故平面BCD,所以为直线CO与平面DBC所成角.设.由,得,所以,因
5、此,直线DF与平面DBC所成角的正弦值为.方法二:由三棱台得,所以直线DF与平面DBC所成角等于直线CO与平面DBC所成角,记为.如图,以为原点,分别以射线OC,OD为y,z轴的正半轴,建立空间直角坐标系.设.由题意知各点坐标如下:.因此.设平面BCD的法向量.由即,可取.所以.因此,直线DF与平面DBC所成角的正弦值为.例4、【2020年高考全国卷理数】如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F(1)证明:AA1MN,且平面A1AMN平面EB1C1F;(2)设O为A
6、1B1C1的中心,若AO平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值【解析】(1)因为M,N分别为BC,B1C1的中点,所以又由已知得AA1CC1,故AA1MN因为A1B1C1是正三角形,所以B1C1A1N又B1C1MN,故B1C1平面A1AMN所以平面A1AMN平面(2)由已知得AMBC以M为坐标原点,的方向为x轴正方向,为单位长,建立空间直角坐标系M-xyz,则AB=2,AM=连接NP,则四边形AONP为平行四边形,故由(1)知平面A1AMN平面ABC,作NQAM,垂足为Q,则NQ平面ABC设,则,故又是平面A1AMN的法向量,故所以直线B1E与平面A1AMN
7、所成角的正弦值为题型三、平面与平面所成的角 利用平面的法向量求二面角的大小时,当求出两半平面,的法向量n1,n2时,要根据观察判断向量在图形中的方向,从而确定二面角与向量n1,n2的夹角是相等还是互补,这是利用向量求二面角的难点、易错点例5、【2019年高考全国卷理数】如图,长方体ABCDA1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BEEC1(1)证明:BE平面EB1C1;(2)若AE=A1E,求二面角BECC1的正弦值【解析】(1)由已知得,平面,平面,故又,所以平面(2)由(1)知由题设知,所以,故,以为坐标原点,的方向为x轴正方向,为单位长,建立如图所示的空间直角坐标系Dx
8、yz,则C(0,1,0),B(1,1,0),(0,1,2),E(1,0,1),设平面EBC的法向量为n=(x,y,x),则即所以可取n=.设平面的法向量为m=(x,y,z),则即所以可取m=(1,1,0)于是所以,二面角的正弦值为【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.例6、【2019年高考全国卷理数】图1是由矩形ADEB,RtABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,FBC=60,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:
9、图2中的A,C,G,D四点共面,且平面ABC平面BCGE;(2)求图2中的二面角BCGA的大小.【答案】(1)见解析;(2).【解析】(1)由已知得ADBE,CGBE,所以ADCG,故AD,CG确定一个平面,从而A,C,G,D四点共面由已知得ABBE,ABBC,故AB平面BCGE又因为AB平面ABC,所以平面ABC平面BCGE(2)作EHBC,垂足为H因为EH平面BCGE,平面BCGE平面ABC,所以EH平面ABC由已知,菱形BCGE的边长为2,EBC=60,可求得BH=1,EH=以H为坐标原点,的方向为x轴的正方向,建立如图所示的空间直角坐标系Hxyz,则A(1,1,0),C(1,0,0),
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
名优专供河北省衡水中学高二语文晨读时分第22周周五版背诵饮酒pdf无答案.pdf
