专题22 最值问题中的瓜豆原理模型(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题22 最值问题中的瓜豆原理模型原卷版 专题 22 问题 中的 原理 模型 原卷版
- 资源描述:
-
1、专题22 最值问题中的瓜豆原理模型 【模型展示】特点瓜豆原理若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。主动点叫瓜,从动点叫豆,瓜在直线上运动,豆也在直线上运动;瓜在圆周上运动,豆的轨迹也是圆。模型总结:条件:主动点、从动点与定点连线的夹角是定量;主动点、从动点到定点的距离之比是定量如图,点C为定点,点P、Q为动点,CP=CQ,且PCQ为定值,当点P在直线AB上运动,Q的运动轨迹是?结论: 主动点路径做在直线与从动点路径所在直线的夹角等于定角 ; 当主动点、从动点到定点的距离相等时,从动点的运动路径长等于主动点的运动路径长; 主动点、从动点的运动轨迹是同样的图形;如图,
2、P是圆O上一个动点,A为定点,连接AP,Q为AP中点考虑:当点P在圆O上运动时,Q点轨迹是?分析:观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有AMQAOP,QM:PO=AQ:AP=1:2结论:确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AOQ点轨迹相当于是P点轨迹成比例缩放根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系结论主动点、从动点到定点的距离
3、之比是定量【模型证明】解决方案如图,P是圆O上一个动点,A为定点,连接AP,作AQAP且AQ=AP考虑:当点P在圆O上运动时,Q点轨迹是?分析:Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90得AQ,故Q点轨迹与P点轨迹都是圆接下来确定圆心与半径考虑APAQ,可得Q点轨迹圆圆心M满足AMAO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO即可确定圆M位置,任意时刻均有APOAQM如图,APQ是直角三角形,PAQ=90且AP=2AQ,当P在圆O运动时,Q点轨迹是?分析考虑APAQ,可得Q点轨迹圆圆心M满足AMAO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:
4、AM=2:1即可确定圆M位置,任意时刻均有APOAQM,且相似比为2模型总结为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值)结论:(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:PAQ=OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩古人云:种瓜得瓜,种豆得豆“种”圆得圆,“种”线得线,谓之“瓜豆原理”【题型演练
5、】一、单选题1如图,在矩形纸片ABCD中,点E是AB的中点,点F是AD边上的一个动点,将沿EF所在直线翻折,得到,则的长的最小值是AB3CD2如图,在RtABC中,ABC90,ACB30,BC2 ,ADC与ABC关于AC对称,点E、F分别是边DC、BC上的任意一点,且DECF,BE、DF相交于点P,则CP的最小值为()A1BCD23如图,等腰RtABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQOP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()ABC1D24如图,在平面直角坐标系中,Q是直线y=x+2上的一个动点,将Q绕点P(1,0)顺时针旋
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
