专题27 最值模型之胡不归模型(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题27 最值模型之胡不归模型原卷版 专题 27 模型 胡不归 原卷版
- 资源描述:
-
1、专题27 最值模型之胡不归模型胡不归模型可看作将军饮马衍生,主要考查转化与化归等的数学思想,近年在中考数学和各地的模拟考中常以压轴题的形式考查,学生不易把握。本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握。在解决胡不归问题主要依据是:点到线的距离垂线段最短。 【模型背景】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?”看到这里很多人都会有一个疑问,少年究竟能不能提前
2、到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题. 知识储备:在直角三角形中锐角A的对边与斜边的比叫做A的正弦,记作sinA,即。【模型解读】一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V11,则提取系数,转化为小于1的形式解决即可)。【最值原理】两点之间线段最短及垂线段最短。例1(2023辽宁锦州统考中考真题)如图,在中,按下列步骤作图:在和上分别截取、,使分别以点D和点E为圆心,以大于的长为半径作弧,两弧在内交于点M作射线交于点F若点P是线段上的一个动点,连接,则的最小值是 例2(2023河北保定统考一模)如图,在矩形中,对角
3、线交于点O,点M在线段上,且点P为线段上的一个动点(1) ;(2)的最小值为 例3(2023陕西西安校考二模)如图,在菱形中,对角线、相交于点,点在线段上,且,点为线段上的一个动点,则的最小值为 例4(2023广东佛山校考一模)在边长为1的正方形中,是边的中点,是对角线上的动点,则的最小值为 _例5(2023湖南湘西统考中考真题)如图,是等边三角形的外接圆,其半径为4过点B作于点E,点P为线段上一动点(点P不与B,E重合),则的最小值为 例6(2023广东深圳校考模拟预测)如图,在平面直角坐标系中,二次函数的图象与x轴交于A、C两点,与y轴交于点B,若P是x轴上一动点,点在y轴上,连接,则的最
4、小值是 例7(2023江苏宿迁统考二模)已知中,则的最大值为 例8(2023四川自贡统考中考真题)如图,直线与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线上的一动点,动点,连接当取最小值时,的最小值是 例9(2023.重庆九年级一诊)如图,抛物线yx2+x+4与x轴交于A,B两点,与y轴交于点C,点D为线段AC的中点,直线BD与抛物线交于另一点E,与y轴交于点F(1)求直线BD的解析式;(2)如图,点P是直线BE上方抛物线上一动点,连接PD,PF,当PDF的面积最大时,在线段BE上找一点G,使得PGGE的值最小,求出点G的坐标及PGGE的最小值;课后专项训练1(2023重庆
5、九年级期中)如图所示,菱形的边长为5,对角线的长为,为上一动点,则的最小值为A4B5CD2(2023山东淄博二模)如图,在平面直角坐标系中,点A的坐标是,点C的坐标是,点是x轴上的动点,点B在x轴上移动时,始终保持是等边三角形(点P不在第二象限),连接,求得的最小值为()AB4CD23(2023.重庆九年级期中)如图,在中,若是边上一动点,则的最小值为AB6CD34(2022河北九年级期中)如图,在ABC中,A15,AB2,P为AC边上的一个动点(不与A、C重合),连接BP,则AP+PB的最小值是()ABCD25(2023安徽合肥校联考一模)如图,在RtABC中,ACB90,B30,AB4,点
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
【执业药师考试】总论练习试卷1-3.pdf
