专题31 运用构造法研究函数的性质(学生版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题31 运用构造法研究函数的性质学生版 专题 31 运用 构造 研究 函数 性质 学生
- 资源描述:
-
1、专题31 运用构造法研究函数的性质一、题型选讲题型一 、构造函数研究函数的单调性例1、【2020年高考全国I卷理数】若,则ABCD变式1、(2020届山东师范大学附中高三月考)已知偶函数的定义域为,其导函数为,当时,有成立,则关于x的不等式的解集为( )ABCD变式2、(2020届山东实验中学高三上期中)已知定义在上的函数满足,且当时,有,则不等式的解集是( )ABCD题型二、构造函数研究函数的零点等问题例2、【2020年高考天津】已知函数若函数恰有4个零点,则的取值范围是A BC D变式1、(2020届山东省潍坊市高三上学期统考)函数若函数只有一个零点,则可能取的值有( )A2BC0D1变式
2、2、【2018年高考全国卷理数】已知函数若g(x)存在2个零点,则a的取值范围是A1,0) B0,+) C1,+) D1,+)题型三、构造函数证明不等式例3、(2019南通、泰州、扬州一调)已知函数f(x)lnx(aR) 设f(x)的导函数为f(x),若f(x)有两个不相同的零点x1,x2.证明:x1f(x1)x2f(x2)2lna2.例5、(2017苏州期末)已知函数f(x)(lnxk1)x(kR) 若x1x2,且f(x1)f(x2),证明:x1x2e2k.二、达标训练1、【2020年高考全国卷理数】若2x2y0Bln(yx+1)0Dln|xy|02、【2020年高考浙江】已知a,bR且ab0,对于任意x0均有(xa)(xb)(x2ab)0,则Aa0Cb03、(2020全国高三专题练习(文)函数,若方程有且只有两个不相等的实数根,则实数的取值范围是 ( )ABCD4、(2020届山东实验中学高三上期中)设定义在上的函数满足,且当时,.己知存在,且为函数(为自然对数的底数)的一个零点,则实数的取值可能是( )ABCD5、(2020届山东省滨州市高三上期末)已知定义在上的函数的导函数为,且,则下列判断中正确的是( )ABCD6、(2020浙江学军中学高三3月月考)已知函数,若函数有9个零点,则实数k的取值范围是( )ABCD
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
