分享
分享赚钱 收藏 举报 版权申诉 / 44

类型专题32 统计(解析版).docx

  • 上传人:a****
  • 文档编号:834816
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:44
  • 大小:2.04MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题32 统计解析版 专题 32 统计 解析
    资源描述:

    1、专题32 统计 技巧1:数据收集的途径技巧2:合理选择统计图表示数据技巧3:调查方式的选择技巧4:几种易产生错觉的统计图【题型】一、判断全面调查或抽样调查【题型】二、判断总体、个体、样本、样本容量【题型】三、用样本估计总体【题型】四、观察条形统计图解决实际问题【题型】五、观察扇形统计图解决实际问题【题型】六、观察折现统计图解决实际问题【题型】七、借助统计图做决策【题型】八、求算术平均数【题型】九、求加权平均数【题型】十、求中位数【题型】十一、求众数【题型】十二、求方差 【题型】十三、求极差一、数据的收集与整理【考纲要求】1.了解总体、个体和样本容量等与统计有关的概念,体会不同的抽样可能得到不同

    2、的结果2.熟悉几种常见统计图表的应用,并会借助统计表作出合理的统计推断3.掌握一些常见的统计方法.【考点总结】一、普查与抽样调查1有关概念(1)普查:为一特定目的而对所有考察对象作的全面调查叫做普查(2)抽样调查:为一特定目的而对部分考察对象作的调查叫做抽样调查2调查的选取当受客观条件限制,无法对所有个体进行普查时,往往采用抽样调查3抽样调查样本的选取抽样时注意样本的代表性和广泛性【考点总结】二、总体、个体、样本及样本容量1总体:所要考察对象的全体叫做总体2个体:总体中的每一个考察对象叫做个体3样本:从总体中抽取的部分个体叫做样本4样本容量:样本中个体的数目叫做样本容量【考点总结】三、几种常见

    3、的统计图表1条形统计图条形统计图就是用长方形的高来表示数据的图形它的特点是:(1)能够显示每组中的具体数据;(2)易于比较数据之间的差别2折线统计图用几条线段连成的折线来表示数据的图形它的特点是:易于显示数据的变化趋势3扇形统计图(1)用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫扇形统计图(2)百分比的意义:在扇形统计图中,每部分占总体的百分比等于该部分所对扇形的圆心角的度数与360的比(3)扇形的圆心角360百分比【考点总结】四、频数分布直方图1每个对象出现的次数叫频数2每个对象出现的次数与总次数的比(或者百分比)叫频率

    4、,频数和频率都能够反映每个对象出现的频繁程度3频数分布表、频数分布直方图和频数折线图都能直观、清楚地反映数据在各个小范围内的分布情况4频数分布直方图的绘制步骤:(1)计算最大值与最小值的差;(2)决定组距与组数;(3)确定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一点;(4)列频数分布表;(5)用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直方图二、数据的分析【考纲要求】1.会求一组数据的平均数、方差、标准差、中位数、众数、能理解它们在实际问题中反映的意义,而且会运用样本估计总体的思想方法解决实际应用问题2.了解样本方差、总体方差、样本标准差

    5、的意义会根据同类问题的两组样本数据的方差或标准差比较两组样本数据的波动情况.【考点总结】一、平均数、众数与中位数1平均数(1)平均数:对于n个数x1,x2,xn,我们把(x1x2xn)叫做这组数据的算术平均数,简称平均数,记为.(2)加权平均数:如果有n个数x1,x2,xn,x1出现f1次,x2出现f2次,x3出现f3次,xk出现fk次(其中f1f2fkn),那么(x1f1x2f2xkfk)叫做x1,x2,xk这k个数的加权平均数,其中f1,f2,fk分别叫做x1,x2,xk的权,f1f2f3fkn.2众数在一组数据中,出现次数最多的数叫做这组数据的众数(一组数据的众数有时有几个)3中位数将一

    6、组数据按大小依次排列,把处在最中间的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数【考点总结】二、数据的波动1方差在一组数据x1,x2,x3,xn中,各数据与它们的平均数的差的平方的平均数叫做这组数据的方差,即s2(x1)2(x2)2(xn)22标准差一组数据的方差的算术平方根叫做这组数据的标准差,即s.3极差一组数据中最大值与最小值的差,叫做这组数据的极差4极差、方差和标准差都可以衡量一组数据的波动大小;方差(或标准差)越大,说明这组数据波动越大【技巧归纳】技巧1:数据收集的途径【类型】一:直接收集数据的途径 观察法1下表是某校七年级(1)班的学生喜欢课外小组人数情况统计表,请你根

    7、据表中的数据,回答下列问题种类航模小组书法小组羽毛球小组舞蹈小组绘画小组篮球小组围棋小组人数15人8人12人9人13人20人7人(1)喜欢_小组的人数最多;(2)喜欢_小组的人数最少;(3)你对学校开展的课外小组有什么好的建议? 问卷调查法2为满足学生锻炼身体的需求,学校将大批量添置运动器械,在购买之前对学生进行了调查,找出学生最喜欢的体育项目,然后按比例分配资金在开始调查前应考虑好如下一些问题:(1)你要调查的问题是什么?(2)你要调查哪些人?(3)你用什么方法调查?(4)向你的调查对象提出哪些问题? 访问法3以下场合宜采用标准式访问的是()A居民入户调查B座谈会C当事人或知情者个别采访D对

    8、试验数据的调查 试验法4下面的调查适合用试验法收集数据的是()A推荐班长候选人B调查同学们的生日C你在10 s内能跑多少米D世界上发生“禽流感”的情况【类型】二:间接收集数据的途径 查阅资料5下面适合用查阅资料的方式收集数据的是()A班内同学喜欢日本动画片的人数B谁适合当学生会主席C篮球运动员姚明的个人资料D在校园内栽树的成活率6要了解我国成功发射的载人飞船的情况,应采用_方式收集数据 数据分析7李佳明同学针对全班同学一周的体育锻炼情况进行了调查,结果如图所示(1)该班有学生多少人?(2)锻炼时间“不少于9 h”的人数占被调查总人数的百分比是多少?(3)面对以上的调查结果,你还能得到什么结论?

    9、(第7题)答案1解:(1)篮球(2)围棋(3)略2解:(1)学生最喜欢的体育项目(2)学校部分学生(3)问卷调查(4)略3C4.C5.C6查阅资料7解:(1)该班有学生31614740(人)(2)锻炼时间“不少于9 h”的人数为14721,所以锻炼时间“不少于9 h”的人数占被调查总人数的百分比为100%52.5%.(3)答案不唯一,如锻炼时间为8 h的人数最多,达16人,锻炼时间为7 h的人数最少,为3人等技巧2:合理选择统计图表示数据【类型】一:条形统计图1某班同学参加植树,第一组植树15棵,第二组植树18棵,第三组植树14棵,第四组植树19棵为了把这个班的植树情况清楚地反映出来,应该制作

    10、的统计图为()A条形统计图 B折线统计图C扇形统计图 D以上都可以2选择合适的统计图表示出下列数据每100 g水果中所含水分情况:梨:90.0 g;苹果:85.9 g;葡萄:88.7 g;桃:86.4 g;香蕉:75.8 g.【类型】二:扇形统计图3空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是()A扇形统计图 B条形统计图C折线统计图 D频数直方图4某市一所中学为了解学生每天的消费情况,随机抽取了该校40名学生进行调查,并将调查结果记录如下:05元,有16人,占40%;610元,有8人,占_%;1115元,有7人,占17.5%;1620元,

    11、有_人,占12.5%;20元以上(不包括20元),有4人,占10%.(1)根据题意把上述所缺数据补充完整;(2)请选择题中适当的数据,设计一个反映该校学生每天消费情况的统计图;(3)你从(2)中的统计图中获得了什么信息?(只写一条)【类型】三:折线统计图5某一周内(周一到周日)每天的最高气温分别为15 ,17 ,18 ,20 ,14 ,17 ,18 .要反映这一周每天的最高气温的变化情况,宜采用什么统计图来表示?并绘制出你认为合适的统计图【类型】三:选择合适的统计图6某校七年级(3)班40位同学都订阅了杂志,50%的同学订阅了科学画报,40%的同学订阅了作文通讯,30%的同学订阅了英语画刊,2

    12、0%的同学订阅了其他杂志能表示上述数据的统计图是()A条形统计图 B频数直方图 C扇形统计图 D以上选项均不对7下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是()答案1A2解:几个数据之间没有直接的联系,又要把这些数据都表示出来,因此应该选用条形统计图,如图(第2题)3A4(1)20;5(2)选择关于百分比的数据,作扇形统计图(或选择关于人数的数据,作条形统计图),如图(第4题) (3)略5解:宜采用折线统计图,如图(第5题)6A点拨:因为本班同学订阅的杂志所占的百分比之和不为1,所以不能选用扇形统计图,应选用条形统计图,故选A.7D技巧3:调查方式的选择【类型】一:普查1下

    13、列调查中,最适合采用普查方式的是()A对重庆市辖区内长江流域水质情况的调查B对乘坐飞机的旅客是否携带违禁物品的调查C对一个社区每天丢弃塑料袋数量的调查D对重庆电视台“天天630”栏目收视率的调查2下列调查中,适合用普查方式的是()A了解一批炮弹的杀伤半径B了解湘潭市每天的流动人口数C了解一本100页书稿的错别字个数D了解石家庄市居民的日平均用水量3以下问题,不适合用普查的是()A旅客上火车前的安检B学校招聘教师,对应聘人员的面试C了解某班学生的课外活动时间D了解一批灯泡的使用寿命【类型】二:抽样调查4下列调查适合用抽样调查的是()A审查书稿有哪些科学性错误B了解一个打字训练班学员的训练成绩是否

    14、都达到了预定训练目标C要考察一个班级的学生对建立班级生物角的看法D要考察人们对保护海洋的意识5下列情况,适合用抽样调查的是()A了解某校飞行学员视力的达标率B了解某校考生的中考录取率C了解某班40名同学的身高情况D了解一批种子的成活率6对于范围较大的调查对象可以采用抽样调查的方法,下列适合用抽样调查的是()A调查本班学生的近视率B调查某校学生的男女比例C了解全国七年级学生的平均身高D人口普查7下列调查中,适合用抽样调查方式的是()A了解全班学生某次考试的情况B调查某一品牌5万袋包装鲜奶是否符合卫生标准C调查我国所有城市中哪些是第一批沿海开放城市D了解全班学生100 m短跑的成绩8为了检测某型号

    15、导线的抗拉强度,现随机抽取几段进行检测,在这次检测中,采用的调查方式是_9为了了解一批白炽灯的使用寿命,只能采用抽样调查方式进行,这是由于_10为了获得较为准确的调查结果,抽样调查时要注意所选取的样本要具有_【类型】三:合理选择调查方式11要了解自来水厂的水中所含矿物质情况,所采用调查方式是()A普查B抽样调查C普查或抽样调查 D以上答案都不对12下列采用的调查方式中,不合适的是()A为了了解全国中学生的身高状况,采用抽样调查的方式B对载人航天器“神舟”十一号零部件的检查,采用普查的方式C医生要了解某病人体内含有病毒的情况,需抽血进行化验,采用普查的方式D为了了解人们保护水资源的意识,采用抽样

    16、调查的方式13在下列问题中,为了得到数据,采用普查还是抽样调查?(1)为了买校服,了解每个学生衣服的尺寸;(2)某养鱼专业户欲了解鱼塘中鱼的平均质量;(3)质检人员在某超市检查出售的饮料的合格率;(4)某班拟组织一次春游活动,为了确定春游的地点,向全班同学进行调查答案1B2.C3.D4.D5.D6.C7.B8抽样调查9这项调查具有破坏性10广泛性和代表性11B12.C13解:采用普查的是(1)(4),采用抽样调查的是(2)(3)技巧4:几种易产生错觉的统计图【类型】一:折线统计图给人的错觉1小明将他的8次数学测验成绩按顺序绘成了如图所示的统计图(第1题) (1)图和图给人造成的感觉各是什么?(

    17、2)若小明想向他的父母说明他数学成绩的提高情况,他将向父母展示哪一个统计图?为什么?【类型】二:条形统计图给人的错觉2为了比较鸡蛋和鹌鹑蛋中各种维生素B的含量,学生甲用如图所示的两幅条形统计图比较两种蛋的各种维生素B的含量,你认为合适吗?为什么?(第2题)【类型】三:扇形统计图给人的错觉3某市在全市普及九年义务教育后,决定在五年内普及高中教育,如图是2016年、2017年两年中考升入高中、技校或中专及辍学人数占考生人数的比例情况(第3题)根据该图,李丽认为该市2017年升入高中人数比2016年少,你同意她的看法吗?为什么?【类型】四:调整统计图以避免产生错觉4如图所示的条形统计图反映了我国某年

    18、图书、杂志和报纸的出版印张数(1)直观地看这个条形统计图,可知哪种出版物总印张数最多?哪种出版物总印张数最少?最多的是最少的几倍?(2)实际上最多的大约是最少的几倍?图中所表现出来的直观情况与此相符吗?(3)这个图为什么会给人造成这样的感觉?(4)为了更直观、清楚地反映实际情况,此图应做怎样的改动?(第4题)答案1解:(1)题图给人的感觉是小明的进步较大,而题图给人的感觉是成绩较稳定,说明小明的进步不是很大(2)小明想向他的父母说明他的数学成绩的提高情况,他将向父母展示题图,因为题图反映小明数学成绩的提高比较明显2解:不合适因为这两幅图不仅不容易对两种蛋的各种维生素B的含量进行比较,而且容易给

    19、我们造成错误的印象:鸡蛋中各种维生素B的含量比鹌鹑蛋的高,这是由于两幅图的纵轴单位刻度不同造成的3解:不同意理由:因为2016年、2017年考生总人数未知,无法计算这两年升入高中人数的具体数目,只能从统计图中判断每年的升学比例所以不能只从两幅图中的比例判断升入高中人数的多少4解:(1)报纸最多,杂志最少,最多的是最少的11倍(2)实际上最多的大约是最少的6倍,图中所表现出来的直观情况与此不相符(3)因为此图纵轴不是从0开始的(4)为了更直观、清楚地反映实际情况,在绘制条形统计图时纵轴上的值应从0开始【题型讲解】【题型】一、判断全面调查或抽样调查例1、下列调查中,适宜采用全面调查的是()A调查全

    20、国初中学生视力情况B了解某班同学“三级跳远”的成绩情况C调查某品牌汽车的抗撞击情况D调查2019年央视“主持人大赛”节目的收视率【答案】B【提示】根据全面调查和抽样调查的适用条件即可求解【详解】解:对于调查方式,适宜于全面调查的常见存在形式有:范围小或准确性要求高的调查,A调查全国初中学生视力情况没必要用全面调查,只需抽样调查即可,B了解某班同学“三级跳远”的成绩情况,因调查范围小且需要具体到某个人,适宜全面调查,C调查某品牌汽车的抗撞击情况,此调查兼破坏性,显然不能适宜全面调查,D调查2019年央视“主持人大赛”节目的收视率,因调查受众广范围大,故不适宜全面调查,故选:B例2、下列调查中,最

    21、适宜采用全面调查(普查)的是()A调查一批灯泡的使用寿命B调查漓江流域水质情况C调查桂林电视台某栏目的收视率D调查全班同学的身高【答案】D【提示】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似从而逐一判断各选项【详解】解:A、调查一批灯泡的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项不合题意;B、调查漓江流域水质情况,所费人力、物力和时间较多,应当采用抽样调查的方式,故本选项不合题意;C、调查桂林电视台某栏目的收视率,人数多,耗时长,应当采用抽样调查的方式,故本选项不合题意D、调查全班同学的身高,应当采用全面调查,故本选项符合题意故选:D【题

    22、型】二、判断总体、个体、样本、样本容量例3、2017年我市有7.1万名初中生参加升学考试,为了了解这7.1万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中,样本容量是()A7.1B2000C7.1万名考生的数学成绩D2000名考生的数学成绩【答案】B【详解】2017年我市有7.1万名初中生参加升学考试,为了了解这7.1万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中,样本容量是2000故选择:B例4、为了了解三中九年级840名学生的体重情况,从中抽取100名学生的体重进行提示在这项调查中,样本是指()A840名学生B被抽取的100名学生C84

    23、0名学生的体重D被抽取的100名学生的体重【答案】D【详解】解:样本是被抽取的100名学生的体重故选:D【题型】三、用样本估计总体例5、某校在全校学生中举办了一次“交通安全知识”测试,张老师从全校学生的答卷中随机地抽取了部分学生的答卷,将测试成绩按“差”、“中”、“良”、 “优”划分为四个等级,并绘制成如图所示的条形统计图若该校学生共有2000人,则其中成绩为“良”和“优”的总人数估计为( )ABCD【答案】A【提示】先求出“良”和“优”的人数所占的百分比,然后乘以2000即可【详解】解:“良”和“优”的人数所占的百分比:100%=55%,在2000人中成绩为“良”和“优”的总人数估计为200

    24、055%=1100(人),故选:A例6、为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有5条,则估计池塘里有鱼()A5000条B10000条C20000条D40000条【答案】D【提示】捕捞200条,若其中有标记的鱼有5条,说明有标记的占到,而有标记的共有1000条,根据所占比例即可解答【详解】解:1000=40 000(条)故选:D例7、对泰顺某种学生快餐营养成分进行检测,绘制成如图所示统计图,已知快餐中碳水化合物有120克,那么快餐中脂肪有( )克A300B120C30D135【

    25、答案】C【提示】根据条件可先算出快餐的总量,然后再用总量乘以脂肪的占比即可算出结果;【详解】根据已知条件可得营养成分总量=克,所以脂肪=克故答案选C【题型】四、观察条形统计图解决实际问题例8、为了解学生体育锻炼的用时情况,陈老师对本班50名学生一天的锻炼时间进行调查,并将结果绘制成如图统计图,那么一天锻炼时间为1小时的人数占全班人数的()A14%B16%C20%D50%【答案】D【提示】根据条形统计图中的数据,可以计算出一天锻炼时间为1小时的人数占全班人数的百分比,从而可以解答本题【详解】解:由题意可得,25(8+25+10+7)100%0.5100%50%,即一天锻炼时间为1小时的人数占全班

    26、人数的50%,故选:D例9、党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置,根据国家统计局发布的数据,年年末全国农村贫困人口的情况如图所示,根据图中提供的信息,下列说法错误的是( )A2019年末,农村贫困人口比上年末减少551万人B2012年末至2019年末,农村贫困人口累计减少超过9000万人C2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村人口的任务【答案】A【提示】用2018年年末全国农村贫困人口数减去2019年年末全国农村贫困人口数,即可判断A;用2012年年末全国农村贫困人口数减去20

    27、19年年末全国农村贫困人口数,即可判断B;根据20122019年年末全国农村贫困发生率统计图,通过计算即可判断C;根据20122019年年末全国农村贫困发生率统计图,即可判断D【详解】A、1660-551=1109,即2019年末,农村贫困人口比上年末减少1109万人,故本选项推断不合理,符合题意;B、2012年末至2019年末,农村贫困人口累计减少:9899-551=9348,所以超过9000万人,故本选项推断合理,不符合题意;C、9899-8249=1650,8249-7017=1232,7017-5575=1442,5575-4335=1240,4335-3046=1289,3046-1

    28、660=1386,1660-551=1109,所以连续7年每年农村贫困人口减少1000万人以上,故本选项推理合理,不符合题意;D、根据20122019年年末全国农村贫困发生率统计图,知:2019年末,还有551万农村人口的脱贫任务,故本选项推理合理,不符合题意;故选:A【题型】五、观察扇形统计图解决实际问题例10、九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( )ABCD【答案】C【提示】根据第一小组人数占总人数的百分比即可计算其角度【详解】由题意可得,总人数为12+20+13+5+10=60,第一小组对应的圆心角度数是:,故选C【题型

    29、】六、观察折现统计图解决实际问题例11、2019年5月26日第5届中国国际大数据产业博览会召开某市在五届数博会上的产业签约金额的折线统计图如图下列说法正确的是( )A签约金额逐年增加B与上年相比,2019年的签约金额的增长量最多C 签约金额的年增长速度最快的是2016年D2018年的签约金额比2017年降低了22.98%【答案】C【详解】A.2016至2018 签约金额逐年减少,故不正确;B. 381.3-40.9=330.4亿元,422.3-221.6=100.7亿元,2016年的签约金额的增长量最多,故不正确;C. 由B知签约金额的年增长速度最快的是2016年,正确;D. (244.6-2

    30、21.6)244.6=9.4%,2018年的签约金额比2017年降低了9.4%,故不正确.故选C.【题型】七、借助统计图做决策例12、为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图根据以上信息解答下列问题:(1)这次抽样调查的样本容量是 ;(2)通过“电视”了解新闻的人数占被调查人数的百分比为 ;扇形统计图中,“手机上网”所对应的圆心角的度数是 ;(3)请补全条形统计图;(4)若该市约有70万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数【答案】(1)1000;(2)15 144;(3)补全条形统计图见解析;(

    31、4)将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数462000人.【解析】试题提示: (1)根据“电脑上网”的人数和所占的百分比求出总人数;(2)用“电视”的数量除以总数求出所占的百分比,用“手机上网”所占的百分比乘以360,即可得出答案;(3)用总人数乘以“报纸”所占百分比,求出“报纸”的人数,从而补全统计图;(4)用全市的总人数乘以“电脑和手机上网”所占的百分比,即可得出答案试题解析:(1)这次接受调查的市民总人数是:26026=1000 (2)扇形统计图中,通过“电视”了解新闻的人数占被调查人数的百分比为:=15, =144; (3)“报纸”的人数为:100010%=100.补

    32、全图形如图所示:(4)估计将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为:70(26%+40%)=7066%=46.2(万人).将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数为462000人.【题型】八、求算术平均数例13、一组数据4,10,12,14,则这组数据的平均数是()A9B10C11D12【答案】B【详解】这组数据的平均数为(4+10+12+14)=10,故选:B例14、已知一组数据1,0,3,-1,x,2,3的平均数是1,则这组数据的众数是( )A-1B3C-1和3D1和3【答案】C【详解】解:由题意,得:,解得:,所以这组数据的众数是:1和3故选:C【题型】

    33、九、求加权平均数例15、某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A19.5元B21.5元C22.5元D27.5元【答案】C【提示】根据加权平均数定义即可求出这天销售的四种商品的平均单价【详解】这天销售的四种商品的平均单价是:5010%+3015%+2055%+1020%22.5(元),故选:C例16、某手表厂抽查了10只手表的日走时误差,数据如下表所示(单位:):日走时误差0123只数3421则这10只手表的平均日走时误差(单位:)是( )A0B0.6C0.8D1.1【答案】D【

    34、详解】由题意得:(03+14+22+31)10=1.1(s)故选D【题型】十、求中位数例17、一组数据2,4,3,5,2的中位数是( )A5B35C3D25【答案】C【提示】把这组数据从小到大的顺序排列,取最中间位置的数就是中位数【详解】把这组数据从小到大的顺序排列:2,2,3,4,5,处于最中间位置的数是3,这组数据的中位数是3,故选:C例18、某校7名学生在某次测量体温(单位:)时得到如下数据:36.3,36.4,36.5,36.7,36.6,36.5,36.5,对这组数据描述正确的是()A众数是36.5B中位数是36.7C平均数是36.6D方差是0.4【答案】A【提示】根据众数、中位数的

    35、概念求出众数和中位数,根据平均数和方差的计算公式求出平均数和方差即可得出答案【详解】解:A、7个数中36.5出现了三次,次数最多,即众数为36.5,故符合题意;B、将7个数按从小到大的顺序排列为:36.3,36.4,36.5,36.5,36.5,36.6,36.7,第4个数为36.5,即中位数为36.5,故不符合题意;C、平均数(36.3+36.4+36.5+36.5+36.5+36.6+36.7)36.5,故不符合题意;D、方差,故不符合题意故选:A【题型】十一、求众数例19、实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则

    36、这组数据的中位数,众数分别为( )A4,5B5,4C4,4D5,5【答案】A【提示】根据众数及中位数的定义,结合所给数据即可作出判断【详解】解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4故选:A例20、一次数学测试,某小组名同学的成绩统计如下(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分则被遮盖的两个数据依次是()ABCD【答案】A【提示】根据平均数的计算公式先求出丙的得分,再根据方差公式进行计算即可得出答案【详解】根据题意得:(分),则丙的得分是分;众数是,故选A【题型】十二、求方差 例21、已知样本数据2,3,5,3,7,下列说法

    37、不正确的是()A平均数是4B众数是3C中位数是5D方差是3.2【答案】C【提示】根据众数、中位数、平均数、方差的定义和计算公式分别进行提示即可【详解】解:样本数据2,3,5,3,7中平均数是4,中位数是3,众数是3,方差是S2(24)2+(34)2+(54)2+(34)2+(74)23.2故选:C例22、如果将一组数据中的每个数都减去5,那么所得的一组新数据( )A众数改变,方差改变B众数不变,平均数改变C中位数改变,方差不变D中位数不变,平均数不变【答案】C【提示】由每个数都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,据此可得答案【详解】解:如果将一组数据中的每个数

    38、都减去5,那么所得的一组新数据的众数、中位数、平均数都减少5,方差不变,故选:C【题型】十三、求极差例23、小红连续天的体温数据如下(单位相):,关于这组数据下列说法正确的是( )A中位数是B众数是C平均数是D极差是【答案】B【提示】根据众数、中位数的概念求得众数和中位数,根据平均数和方差、极差公式计算平均数和极差即可得出答案【详解】A将这组数据从小到大的顺序排列:36.2,36.2,36.3,36.5,36.6,则中位数为36.3,故此选项错误B36.2出现了两次,故众数是36.2,故此选项正确;C平均数为(),故此选项错误;D极差为36.6-36.2=0.4(),故此选项错误,故选:B例2

    39、4、如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A极差是8B众数是28C中位数是24D平均数是26【答案】B【解析】提示:根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题详解:由图可得,极差是:30-20=10,故选项A错误,众数是28,故选项B正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26,故选项C错误,平均数是:,故选项D错误,故选B统计(达标训练)一、单选题1今年某市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A

    40、每位考生的数学成绩是个体B1000名考生是样本容量C这1000名考生是总体的一个样本D近9万多名考生是总体【答案】A【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目【详解】解:A每位考生的数学成绩是个体,故选项正确,符合题意;B1000是样本容量,故选项错误,不合题意;C这1000名考生的数学成绩是总体的一个样本,故选项错误,不合题意;D近9万多名考生的数学成绩是总体,故选项错误,不合题意;故选:A【点睛】本题考查了总体、个体、样本、样本容量,解题的关键是要分清具体问题中的总体、个体与样本,关键是明确考查的对象2

    41、下列调查中,适宜用全面调查方式的是()A了解某班学生的身高情况B调查全国中小学生课外阅读情况C调查春节联欢晚会的收视率D对全国中学生心理健康现状的调查【答案】A【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似【详解】解:A、了解某班学生的身高情况,用全面调查,故此选项正确;B、调查全国中小学生课外阅读情况,人数众多,应采用抽样调查,故此选项错误;C、调查春节联欢晚会的收视率,范围较广,应采用抽样调查,故此选项错误;D、对全国中学生心理健康现状的调查,人数众多,应采用抽样调查,故此选项错误;故选:A【点睛】本题考查了抽样调查和全面调查的区别,选择

    42、普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查3小明同学对历届菲尔兹奖得主获奖时的年龄进行了统计,得到频数分布直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中获奖时年龄在36岁及以上的人数有()A13人B20人C33人D47人【答案】C【分析】由频数分布直方图知,年龄在的有20名,的有13名,继而可得答案【详解】解:由频数分布直方图知,年龄在的有20名,的有13名,所以年龄在36岁及以上的人数有(人),故选:C【点睛】本题主要考查频数分布直方

    43、图,解题的关键是根据频数分布直方图得出各组人数4下面统计调查中,适合采用全面调查的是()A调查市场上某种食品防腐剂是否符合国家标准B调查某城市初中生每周“诵读经典”的时间C对某品牌手机的防水性能的调查D疫情期间对国外入境人员的核酸检测【答案】D【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可【详解】解:A、调查市场上某种食品防腐剂是否符合国家标准,适宜抽样调查,故本选项不符合题意;B、调查某城市初中生每周“诵读经典”的时间,适宜抽样调查,故本选项不符合题意;C、对某品牌手机的防水性能的调查,适宜抽样调查,故本选项不符合题意;D、疫情期

    44、间对国外入境人员的核酸检测,适合采用全面调查,故本选项符合题意;故选:D【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查5下列调查中,适宜采用普查方式的是()A对全国中学生心理健康现状的调查B对我国首架大型民用飞机零部件的检查C对我市市民实施低碳生活情况的调查D对市场上的冰淇淋质量的调查【答案】B【分析】根据普查方式适用范围,逐项判断即可【详解】A对全国中学生心理健康现状的调查,采用抽样调查

    45、法,故选项错误,不符合题意;B对我国首架大型民用飞机零部件的检查,采用普查法,故选项正确,符合题意;C对我市市民实施低碳生活情况的调查,采用抽样调查,故选项错误,不符合题意D对市场上的冰淇淋质量的调查,采用抽样调查,故选项错误,不符合题意;故选:B【点睛】此题考查了普查,解题的关键是熟悉普查方式的概念6已知一组数据,则关于这组数据的说法中,错误的是()A平均数是B中位数是C极差是D方差是【答案】B【分析】分别求出该组数据的平均数, 极差, 方差, 中位数,即可求解【详解】解:平均数是,故A正确,不符合题意;极差,故C正确,不符合题意;方差,故D正确,不符合题意把这一组数据从小到大排列为1,2,

    46、3,4,5,所以中位数为3,故B不正确,符合题意故选B【点睛】此题考查平均数和中位数一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大或按从大到小的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数要求平均数只要求出数据之和再除以总个数即可;对于极差是最大值与最小值的差;方差是样本中各数据与样本平均数的差的平方和的平均数7我校男子足球队名队员的年龄如下表所示:年龄岁人数这些队员年龄的众数和中位数分别是()A,B,C,D,【答案】A【分析

    47、】出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数【详解】解:18出现了7次,出现的次数最多,所以众数是18岁;把这些数从小大排列,中位数是第11和第12个数分别是17、17,所以中位数为17岁故选:A【点睛】本题考查统计知识中的中位数和众数的概念将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数一组数据中出现次数最多的数据叫做众数8下列说法中,正确的是()A对载人航天器零部件的检查适合采用抽样调查B某种彩票中奖的概率是,则购买张这种彩票一定会

    48、中奖C为了了解一批洗衣粉的质量情况,从仓库中随机抽取袋洗衣粉进行检验,这个问题中的样本是D甲乙两人各进行了次射击测试,他们的平均成绩相同,方差分别是,则乙的射击成绩较稳定【答案】D【分析】根据抽样调查、全面调查、概率、方差、样本以及样本容量的意义进行判断即可【详解】解:为确保载人航天器的每个零件合格,应采取全面调查,不能用抽查,因此选项A不符合题意;B某种彩票中奖的概率是,买张这种彩票也不一定会中奖,因此选项B不符合题意;C为了了解一批洗衣粉的质量情况,从仓库中随机抽取袋洗衣粉进行检验,这个问题中的样本是袋洗衣粉的质量,样本容量为,因此选项C不符合题意;D由于平均数相同,方差小的比较稳定,因此

    49、乙的射击成绩较稳定,所以选项D符合题意;故选:【点睛】本题考查抽样调查、全面调查、概率、方差、样本以及样本容量,理解抽样调查、全面调查、概率、方差、样本以及样本容量的意义是正确判断的前提9某乒乓球队12名队员年龄情况如下:年龄2022182119人数32124则这12名队员年龄的众数、中位数分别是()A3,4B4,3C19,20D20,19【答案】C【分析】根据众数定义、中位数的定义及计算方法直接求解即可得到答案【详解】解:由年龄统计表可知,这12名队员年龄的众数为;按照年龄从小到大的顺序可知,18岁1人,19岁4人,20岁3人,因此中位数为;故选:C【点睛】本题考查众数及中位数的定义及计算方

    50、法,熟记相关定义并正确分析数据是解决问题的关键10某班班长统计去年18月“书香校园”活动中全班同学的课外阅讯数量(单位:本),绘制了如图折线统计图,下列说法不正确的是()A极差是B众数是C中位数是D平均数是【答案】D【分析】根据极差的定义,众数的定义,中位数的定义以及平均数的计算方法分别进行计算即可得解【详解】解:A极差,故本选项不符合题意;B58出现的次数最多,是2次,所以,众数是58,故本选项不符合题意;C按照阅读本数从小到大的顺序排列为:28、36、42、58、58、70、78、83,中间两个数都是58,所以,中位数是58,故本选项不符合题意;D平均数,故本选项符合题意故选:D【点睛】本

    51、题考查了折线统计图,主要利用了极差的定义,众数的定义,中位数的定义,算术平均数的求解,根据图表准确获取信息是解题的关键二、填空题11某班进行了轮数学知识竞赛模拟赛,甲、乙、丙、丁名同学次模拟竞赛成绩的平均分分别是:甲分,乙分,丙分,丁分,方差分别是,若要从这名同学中,选取一位同学参加学校比赛,选 _最合适【答案】乙【分析】根据方差的意义:方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小,即可【详解】解:乙,丙,丁的平均数相等,且大于甲,在乙,丙,丁中选一人参加,这3名同学3轮数学成绩最稳定的是乙,选乙参加故答案为:乙【点睛】本题主要考查方差,解题的关键是掌握

    52、方差的意义12华山鞋厂为了了解初中学生的鞋号情况,对永红中学初二(1)班的名男生所穿鞋号统计如下表:鞋号人数那么这名男生鞋号数据的平均数是_(精确到),中位数是_;在平均数、中位数和众数中,鞋厂最感兴趣的是_【答案】 众数【分析】将所有数据加起来除以总数即可得到平均数;将所有数据进行排列,去中间数即中位数;再根据“平均数、中位数和众数的统计意义”进行分析判断即可【详解】这名男生鞋号数据的平均数为:,将这名男生鞋号从小到大排列处在中间位置的两个数都是,因此中位数是,因为鞋厂最高兴趣的是哪个鞋号的鞋子销售的多,所以最感兴趣的是众数,故答案为:,众数【点睛】本题考查求平均数、众数、中位数熟知:“平均

    53、数、中位数和众数的定义及各自的统计意义”是解答本题的关键三、解答题13某校为了了解九年级1200名同学对防疫知识的掌握情况,对他们进行了防疫知识测试,现随机抽取甲、乙两班各15名同学的测试成绩进行整理分析,过程如下:【收集数据】甲班15名学生测试成绩分别为:78,83,89,97,98,85,100,94,87,90,93,92,99,95,100乙班15名学生测试成绩中的成绩如下:91,92,94,90,93【整理数据】班级甲1146乙12354分析数据班级平均数众数中位数方差甲921009341.7乙908750.2应用数据(1)根据以上信息,可以求出:_,_分;(2)根据以上数据,甲乙两

    54、个班级中成绩较稳定的是_班;(3)若规定测试成绩90分及其以上为优秀,请估计参加防疫知识测试的1200名学生中,成绩为优秀的学生共有多少人【答案】(1)3,91(2)甲(3)760人【分析】(1)用15减去其他段的人数,可得a值,利用中位数的求法计算可得b值;(2)比较方差的大小,即可判断(3)用1200乘以成绩优秀的学生所占的百分比,即可求解;【详解】(1)解:人,即,乙班15名学生测试成绩中,中位数是第8个数,即出现在这一组中的91,故答案为:3,91;(2)甲班分数的方差为:,乙班分数的方差为:,甲乙两个班级中成绩较稳定的是甲班;(3)根据题意得:(人,答:估计成绩为优秀的学生约为760

    55、人【点睛】本题主要考查了求中位数和众数,用样本估计总体,利用方差判定稳定性,熟练掌握中位数、样本估计总体的计算方法是解题的关键统计(提升测评)一、单选题1下列说法不正确的是()A了解一批电视机的使用寿命适合用抽样调查B“彩票中奖的概率为0.1%”表示买1000张彩票肯定会中奖C“抛一枚均匀的正方体骰子,朝上的点数是2的概率”,表示随着抛掷次数的增加,“抛出朝上的点数是2”这一事件发生的频率稳定在附近D在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件【答案】B【分析】根据抽样调查的特点,概率意义的理解,随机事件分析选项即可【详解】解:由题意可知:A. 了解一批电视机的使用寿命适合用抽样调查,

    56、说法正确,不符合题意;B. “彩票中奖的概率为0.1%”表示买1000张彩票可能会中奖,说法不正确,符合题意;C. “抛一枚均匀的正方体骰子,朝上的点数是2的概率”,表示随着抛掷次数的增加,“抛出朝上的点数是2”这一事件发生的频率稳定在附近,说法正确,不符合题意;D. 在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件,说法正确,不符合题意;故选:B【点睛】本题考查抽样调查的特点,概率意义的理解,随机事件,解题的关键是掌握以上知识点2下列说法不正确的是()A为了表明空气中各组成部分所占百分比宜采用扇形统计图B了解某班同学的视力情况采用全面调查C为了表示中国在历届冬奥会获得的金牌数量的变化趋势

    57、采用折线图D调查神舟十四号载人飞船各零部件的质量采用抽样调查【答案】D【分析】根据统计图的特点,可判断A、C;根据调查方式,可判断B、D【详解】A. 为了表明空气中各组成部分所占百分比宜采用扇形统计图,选项正确;B. 了解某班同学的视力情况采用全面调查,选项正确;C. 为了表示中国在历届冬奥会获得的金牌数量的变化趋势采用折线图,选项正确;D.调查神舟十四号载人飞船各零部件的质量采用全面调查,选项错误,故选:D.【点睛】本题考查了统计图的选择、全面调查和抽样调查扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示

    58、出每个项目的具体数目;本题主要考查了解决的关键是理解概率的意义用到的知识点为:不太容易做到的事要采用抽样调查3下列说法正确的是()A了解我市市民观看2022北京冬奥会开幕式的观后感,适合普查B若一组数据2、2、3、4、4、x的众数是2,则中位数是2或3C一组数据2、3、3、5、7的方差为3.2D“面积相等的两个三角形全等”这一事件是必然事件【答案】C【分析】根据全面调查与抽样调查、中位数与众数、方差、必然事件的定义逐项判断即可得【详解】解:A、了解我市市民观看2022北京冬奥会开幕式的观后感,适合抽样调查,则此项说法错误,不符题意;B、因为一组数据2、2、3、4、4、的众数是2,所以,将这组数

    59、据按从小到大进行排序为,则第三个数和第四个数的平均数为中位数,所以中位数是,则此项说法错误,不符题意;C、这组数据的平均数为,则方差为,此项说法正确,符合题意;D、“面积相等的两个三角形不一定全等”,则这一事件是随机事件,此项说法错误,不符题意;故选:C【点睛】本题考查了全面调查与抽样调查、中位数与众数、方差、必然事件,熟练掌握各定义和计算公式是解题关键4下列说法不正确的是()A选举中,人们通常最关心的数据是众数B若甲组数据的方差,乙组数据的方差,则甲组数据比乙组数据稳定C要了解一批烟花的燃放时间,应采用抽样调查的方法D某游戏的中奖率是,说明参加该活动次就有次会中奖【答案】D【分析】根据众数、

    60、方差、抽样调查、概率的意义分别对每一项进行分析,即可得出答案【详解】解 A选举中,人们通常最关心的数据是众数,故本选项正确;B若甲组数据的方差s 2甲=005,乙组数据的方差s 2 乙=01,则甲组数据比乙组数据稳定,故本选项正确; C要了解一批烟花的燃放时间,应采用抽样调查的方法,故本选项正确;D某游戏的中奖率是60%,说明参加该活动10次可能有6次会中奖,这是一个随机事件,不确定,故本选项错误;故选D【点睛】此题考查了众数、方差、抽样调查、概率的意义,熟练掌握众数、方差、抽样调查、概率的意义,是解题的关键5为备战杭州2022年第19届亚运会,甲、乙两名运动员进行射击训练,在相同条件下,两人

    61、各射击10次,射击的成绩如图所示,以下判断正确的是()A甲的平均成绩大于乙的平均成绩B乙的平均成绩大于甲的平均成绩C甲的成绩比乙的成绩更稳定D乙的成绩比甲的成绩更稳定【答案】D【分析】分别算出甲、乙的平均数和方差,并根据平均数、方差进行判断即可【详解】解:, ;, ; 乙的射击成绩更稳定故选:D【点睛】本题考查了平均数与方差,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好6下表记录了甲、乙、丙、丁四名三级跳远运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数/m17.4617.4617.4517.45方差/

    62、m25.73.56.78.6要从中选择一名发挥稳定的运动员去参加比赛,应该选择()A甲B乙C丙D丁【答案】B【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加即可【详解】解:甲、乙成绩的平均数大于丙、丁成绩的平均数,从甲和乙中选择一人参加比赛, ,选择乙参赛,故选:B【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键7响应国家体育总局提出的“全民战疫居家健身”,学校组织了趣味横生的线上活动某校组织了“一分钟跳绳”活动,根据10名学生上报的跳绳成绩,将数据整理制成如下统计表:一分钟跳绳个数141144145146学生人数(名)5212则关于这组数据的结论正确的是()A

    63、平均数是144B众数是141C中位数是144.5D方差是5.4【答案】B【分析】根据平均数、众数、中位数、方差的定义分别计算出结果,然后判断即可【详解】根据题目给出的数据,可得:平均数为:,故A选项错误;众数是:141,故B选项正确;中位数是:,故C选项错误;方差是:,故D选项错误;故选:B【点睛】本题考查的是平均数,众数,中位数,方差的定义和计算,熟悉相关定义是解题的关键8下列说法正确的是()A九年级某班的英语测试平均成绩是,说明每个同学的得分都是分B数据,的中位数和众数都是C要了解一批日光灯的使用寿命,应采用全面调查D若甲、乙两组数据中各有个数据,两组数据的平均数相等,方差,则说明乙组数数

    64、据比甲组数据稳定【答案】D【分析】根据选项内容逐一进行剖析,判断正误即可【详解】解:A九年级某班的英语测试平均成绩是,说明这个班的英语成绩的平均水平是分,并不是每个同学的得分都是分,故此选项A不符合题意;B数据4,4,5,5,0的中位数是4,众数是4和5,故选项B不符合题意;C要了解一批日光灯的使用寿命,应采用抽样调查的方式,不能采用全面调查,故选项C不符合题意;D若甲、乙两组数据中各有20个数据,两组数据的平均数相等,方差,则说明乙组数数据比甲组数据稳定,说法正确;故选:D【点睛】本题考查了全面调查、抽样调查的定义、中位数、众数、平均数及方差的意义,理解这些概念是解题的关键二、填空题9下表是

    65、某少年足球俱乐部学员的年龄分布,其中一个数据被遮盖了若这组数据的中位数为13.5岁,则这个俱乐部共有学员_人年龄13141516频数282223【答案】146【分析】根据中位数的概念计算即可【详解】解:由中位数为13.5岁,可知中间的两个数为13,14,这个俱乐部共有学员(28+22+23)2=146(人)故答案为:146【点睛】本题主要考查了中位数的概念,读懂列表,从中得到必要的信息是解答本题的关键10为了解某校学生每周课外阅读时间的情况,随机抽取该校a名学生进行调查,获得的数据整理后绘制成统计表如下:每周课外阅读时间/小时合计频数817b15a频率0.080.17c0.151表中组的频数b

    66、满足下面有四个推断:表中a的值为100;表中c的值可以为0.31:这a名学生每周课外阅读时间的中位数一定不在68之间:这名学生每周课外阅读时间的平均数不会超过6所有合理推断的序号是_【答案】#【分析】根据数据总数=频数频率,列式计算可求a的值;根据组的频数b满足,可求该范围的频数,进一步得到c的值的范围,从而求解;根据中位数的定义即可求解;根据加权平均数的计算公式即可求解【详解】解:,故表中a的值为100,是合理推断;,故表中c的值为,表中c的值可以为,是合理推断;表中组的频数b满足, 这100名学生每周课外阅读时间的中位数可能在46之间,也可能在68之间,故此推断不是合理推断;这a名学生每周

    67、课外阅读时间的平均数可以超过6,故此推断不是合理推断综上,所有合理推断的序号是故答案为:【点睛】本题考查频数(率)分布表,中位数,从表中获取数量及数量之间的关系是解决问题的关键三、解答题11某学校在经典诵读活动中,对全校学生用、四个等级进行评价,每个等级对应的分数依次为:分、分、分、分,现从中随机抽取若干名学生的评价结果,绘制出了如下的统计图,请你根据图中信息,解答下列问题:(1)本次调查数据的众数为_分,中位数为_分;(2)求本次调查数据的平均数;(3)若该校共有名学生,请你估计该校有多少名学生获得等级的评价【答案】(1),(2)87(3)【分析】(1)根据众数和中位数的定义,结合统计图所给

    68、数据即可求解;(2)利用平均数公式即可求解;(3)总人数乘以样本中获得B等级的评价所占比例即可求解【详解】(1)由条形统计图可知:获得分的学生数最多,本次调查数据的众数为;本次调查获得分、分、分、分的学生数分别是人、人、人、人,一共有人,按从小到大的顺序排列,位于最中间的两个数的平均数为, 中位数为,故答案为:;(2)(分),即本次调查数据的平均数为分(3)(名),答:估计该校有名学生获得B等级的评价【点睛】本题考查条形统计图的运用,涉及到众数、平均数、中位数以及用样本估算总体,正确读懂统计图,解题的关键是熟练掌握众数、平均数、中位数概念12“新冠肺炎”爆发后,某校数学课外实践小组就针对人类感

    69、染“新冠肺炎”后具体表现情况的了解程度这个问题,在全校随机调查了部分学生,调查结果分为四种:A非常了解,B比较了解,C基本了解,D不太了解,实践小组把此次调查结果整理并绘制成下面两幅不完整的条形统计图和扇形统计图,且每位学生只能选择其中一种情况,请结合图中所给信息解答下列问题:(1)本次共调查_名学生;扇形统计图中C所对应扇形的圆心角度数是_度;(2)补全条形统计图;(3)该校共有800名学生,根据以上信息,请你估计全校学生中对上述问题“非常了解”的约有多少名?【答案】(1),(2)见解析(3)名【分析】(1)由A的人数及其所占百分比可得总人数,用360度乘以C的人数占比例即可得;(2)用总人数乘以D的百分比求得其人数,再根据各类型人数之和等于总人数求得B的人数,据此补全图形即可得;(3)用总人数乘以样本中A类型的百分比可得【详解】(1)解:人,本次共调查了名学生;扇形统计图中C所对应扇形的圆心角度数是,故答案为:,;(2)解:由题意得,D所对应的人数为名,B所对应的人数为名,补全统计图如下:(3)解:名,估计全校学生中对上述问题“非常了解”的约有名【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题32 统计(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-834816.html
    相关资源 更多
  • 人教版数学四年级上学期期末综合素养提升卷及参考答案【实用】.docx人教版数学四年级上学期期末综合素养提升卷及参考答案【实用】.docx
  • 人教版数学四年级上学期期末综合素养提升卷及参考答案【培优】.docx人教版数学四年级上学期期末综合素养提升卷及参考答案【培优】.docx
  • 人教版数学四年级上学期期末综合素养提升卷及参考答案1套.docx人教版数学四年级上学期期末综合素养提升卷及参考答案1套.docx
  • 人教版数学四年级上学期期末综合素养提升卷及免费答案.docx人教版数学四年级上学期期末综合素养提升卷及免费答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷及一套答案.docx人教版数学四年级上学期期末综合素养提升卷及一套答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷及1套完整答案.docx人教版数学四年级上学期期末综合素养提升卷及1套完整答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷及1套参考答案.docx人教版数学四年级上学期期末综合素养提升卷及1套参考答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷参考答案.docx人教版数学四年级上学期期末综合素养提升卷参考答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷加下载答案.docx人教版数学四年级上学期期末综合素养提升卷加下载答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷下载.docx人教版数学四年级上学期期末综合素养提升卷下载.docx
  • 人教版数学四年级上学期期末综合素养提升卷【黄金题型】.docx人教版数学四年级上学期期末综合素养提升卷【黄金题型】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【重点】.docx人教版数学四年级上学期期末综合素养提升卷【重点】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【轻巧夺冠】.docx人教版数学四年级上学期期末综合素养提升卷【轻巧夺冠】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【能力提升】.docx人教版数学四年级上学期期末综合素养提升卷【能力提升】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【考点梳理】.docx人教版数学四年级上学期期末综合素养提升卷【考点梳理】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【网校专用】.docx人教版数学四年级上学期期末综合素养提升卷【网校专用】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【综合题】.docx人教版数学四年级上学期期末综合素养提升卷【综合题】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【综合卷】.docx人教版数学四年级上学期期末综合素养提升卷【综合卷】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【精练】.docx人教版数学四年级上学期期末综合素养提升卷【精练】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【真题汇编】.docx人教版数学四年级上学期期末综合素养提升卷【真题汇编】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【最新】.docx人教版数学四年级上学期期末综合素养提升卷【最新】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【易错题】.docx人教版数学四年级上学期期末综合素养提升卷【易错题】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【必考】.docx人教版数学四年级上学期期末综合素养提升卷【必考】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【必刷】.docx人教版数学四年级上学期期末综合素养提升卷【必刷】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【实验班】.docx人教版数学四年级上学期期末综合素养提升卷【实验班】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【学生专用】.docx人教版数学四年级上学期期末综合素养提升卷【学生专用】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【夺冠系列】.docx人教版数学四年级上学期期末综合素养提升卷【夺冠系列】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【夺冠】.docx人教版数学四年级上学期期末综合素养提升卷【夺冠】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【培优】.docx人教版数学四年级上学期期末综合素养提升卷【培优】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1