分享
分享赚钱 收藏 举报 版权申诉 / 42

类型专题38 重要的几何模型之中点模型(一)(解析版).docx

  • 上传人:a****
  • 文档编号:834984
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:42
  • 大小:3.58MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题38 重要的几何模型之中点模型一解析版 专题 38 重要 几何 模型 之中 解析
    资源描述:

    1、专题38 重要的几何模型之中点模型(一)中点模型是初中数学中一类重要模型,它在不同的环境中起到的作用也不同,主要是结合三角形、四边形、圆的运用,在各类考试中都会出现中点问题,有时甚至会出现在压轴题当中,我们不妨称之为“中点模型”,它往往涉及到平分、平行、垂直等问题,因此探寻这类问题的解题规律对初中几何的学习有着十分重要的意义。常见的中点模型:垂直平分线模型;等腰三角形“三线合一”模型;“平行线+中点”构造全等或相似模型(与倍长中线法类似);直角三角形斜边中点模型;中位线模型;中点四边形模型。本专题就中点模型的后三类模型进行梳理及对应试题分析,方便掌握。模型1:垂直平分线定理:线段垂直平分线上的

    2、点到线段两端的距离相等。如图,在三角形ABC中,DEBC,且D为BC中点,则BE=EC。模型运用条件:当遇到三角形一边垂线过这边中点时,可以考虑用垂直平分线的性质。例1(2023河北廊坊校考三模)如图,已知在菱形中,连接对角线,作边的垂直平分线,分别交、于点、,若,则的度数是()ABCD【答案】B【分析】如图,连接,证明,设,证明,可得,再建立方程求解即可【详解】解:如图,连接,由菱形的对称性可得:,由作图可得:是的垂直平分线,而,设,菱形,解得:,;故选B【点睛】本题考查的是菱形的性质,线段的垂直平分线的性质,等腰三角形的判定与性质,熟练的利用方程思想解题是关键例2(2023上江西南昌八年级

    3、校考阶段练习)如图,已知,以A,B两点为圆心的长为半径画圆弧,两弧相交于点M,N,则的周长为()A8BCD【答案】A【分析】本题考查了作垂线,垂直平分线的性质熟练掌握作垂线,垂直平分线的性质是解题的关键由作图可知,垂直平分,则,根据的周长为,计算求解即可【详解】解:由作图可知,垂直平分,的周长为故选:A例3(2023山东济南统考二模)如图,在中,分别以、为圆心,大于的长为半径画弧,两弧交于、两点,作直线交于点,若,则的面积为()A2BCD4【答案】B【分析】连接,由作法得垂直平分线,由线段垂直平分线的性质和等腰三角形的性质证得,由三角形外角的性质得到,根据含30度直角三角形的性质和勾股定理求出

    4、,根据三角形的面积公式即可求出的面积【详解】解:连接,由作法得垂直平分线,在中,的面积故选:【点睛】本题考查了作图复杂作图,线段垂直平分线的性质,含30度直角三角形的性质和勾股定理等知识,熟悉基基本作图和线段垂直平分线的性质是解决问题的关键例4(2023上辽宁营口八年级校联考阶段练习)如图,在中,平分,点分别是,边上的动点,则的最小值是 【答案】【分析】作点关于直线的对称点,连接、,根据轴对称的性质、垂直平分线的性质可得,则欲求的最小值即为的最小值,即的最小值,则当时,即的值最小,最小值为的长【详解】解:如图,作点关于直线的对称点,连接、,是、的对称轴,即是线段的垂直平分线,的最小值即为的最小

    5、值,即的最小值,当时,即的值最小,此时与重合,与重合,最小值为的长,在中,的最小值是故答案为:【点睛】本题考查的知识点是轴对称的性质、垂直平分线的性质、最短路径问题、垂线段最短及含角的直角三角形的性质,解题关键是找出点、的位置例5(2022黑龙江哈尔滨校考模拟预测)如图,中,点D在边上,连接,点E是的中点,交于点F,若,则的长为 【答案】【分析】设,延长至点,使,连接,先证明,得,设,再在中,根据勾股定理即可【详解】解:点E是的中点,中, 交于点F, ,设,延长至点,使,连接,点E是的中点,设,中,勾股定理得:,解得:,故的长为【点睛】本题考查了勾股定理,垂直平分线的性质,全等三角形的判定和性

    6、质,作出合适的辅助线是本题的关键例6(2023上江苏盐城八年级校联考阶段练习)如图,在中,为钝角,边的垂直平分线分别交于点D,E(1)若,求的大小;(2)若的平分线和边的垂直平分线相交于点F,过点F作垂直于的延长线于点G,求证:【答案】(1)(2)证明见解析【分析】(1)如图1,连接,由垂直平分线的性质可知,由,可得,则为直角三角形,且,由三角形内角和,三角形外角的性质可求,根据,计算求解即可;(2)如图2,在上截取,使,连接,作于,则,证明,由等腰三角形的判定与性质可得,证明,则,进而结论得证【详解】(1)解:如图1,连接,为边的垂直平分线,为直角三角形,且,即,;(2)证明:如图2,在上截

    7、取,使,连接,作于,是的平分线,是的垂直平分线,【点睛】本题考查了垂直平分线的性质,勾股定理的逆定理,三角形内角和定理,三角形外角的性质,角平分线的性质,全等三角形的判定与性质,等腰三角形的判定与性质熟练掌握垂直平分线的性质,勾股定理的逆定理,三角形内角和定理,三角形外角的性质,角平分线的性质,全等三角形的判定与性质,等腰三角形的判定与性质是解题的关键模型2:等腰三角形的“三线合一”定理:等腰三角形底边中线、高线、顶角平分线“三线合一”。如图,等腰三角形ABC中,AB=AC,D为BC边上的中点,则BAD =CAD,ADBC, BD=CD。模型运用条件:等腰三角形中有底边上的中点时,常作底边的中

    8、线。例1(2023河南驻马店校考三模)如图,在中,分别以点A,C为圆心,以大于的长为半径作弧,两弧相交于点M,N,作直线交于点D,交于点E,连接则下列结论不一定正确的是()ABCD【答案】A【分析】利用线段的垂直平分线的性质判断即可【详解】由作图可知,垂直平分线段, ,(等腰三角形“三线合一”)故选项B,C,D正确,故选:A【点睛】本题考查了线段的垂直平分线的性质,等腰三角形“三线合一”性质,正确掌握线段垂直平分线的性质是解题关键例2(2023山东济宁统考二模)如图,中,平分,点E是的中点若,则的长是()ABCD7【答案】C【分析】先由三线合一定理得到,再由勾股定理求出,最后证明是的中位线,即

    9、可得到【详解】解:,平分,点D为的中点,在,由勾股定理得,点E是的中点,是的中位线,故选C【点睛】本题主要考查了等腰三角形的三线合一,勾股定理,三角形中位线定理,灵活运用所学知识是解题的关键例3(2023广东梅州九年级校联考期末)如图,已知,点在边上,点,在边上,若,则 【答案】5【分析】过作,交于点,先说明,再根据含30度直角三角形的性质可得的长;由,利用等腰三角形三线合一可得为中点,再根据求出的长,最后根据即可解答【详解】解:如图:过作交于点,在中, ,故答案为:5【点睛】本题主要考查的是含30度直角三角形的性质、等腰三角形的性质等知识,熟练掌握直角三角形的性质是解本题的关键例4(2023

    10、上重庆渝中八年级校考期中)如图,在等腰中,延长至点,使得,过点作,垂足为,延长至点,连接,若,则 【答案】24【分析】过点A作于点G,过点B作于点H,设,根据三角形内角和定理求出的度数,的度数,于是求出的度数,根据即可求出的度数,根据周角的定义求出,于是可求出的度数,从而得出是等腰三角形,再证和全等得出,根据的面积求出的长,于是得出的长,再根据等腰三角形三线合一即可求出的长【详解】解:如图,过点A作于点G,过点B作于点H,设,又,在中,即是等腰三角形,由等腰三角形三线合一的性质得,在和中,是等腰三角形,故答案为:24【点睛】本题考查了等腰三角形的判定与性质,三角形全等的判定与性质,三角形内角和

    11、定理,三角形面积公式等知识,熟练掌握这些图形的性质是解题的关键例5(2023上山东菏泽九年级统考期中)如图,在中,点为的中点,于点,则的值为()ABCD【答案】C【分析】此题考查了解直角三角形、等腰三角形的性质、勾股定理、锐角三角函数的定义以及余角的性质此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用连接,由中,为中点,利用等腰三角形三线合一的性质,可证得,再利用勾股定理,求得的长,那么在直角中根据三角函数的定义求出,然后根据同角的余角相等得出,于是【详解】解:连接,中,为中点,故选:C例6(2023黑龙江统考三模)如图,在四边形中,作于点E,连接,则的长为()A10B8C6D

    12、4【答案】C【分析】过点F作交与点F,根据等腰三角形的性质得出,根据同角的余角相等易证,根据全等三角形的性质得出,设,则,从而得出,再将建立方程,求解即可得出答案【详解】解:过点F作交与点F,在和中 ,设,则, ;经检验符合题意,即,故选C【点睛】本题考查了等腰三角形的性质、勾股定理、全等三角形的判定及性质、无理方程,熟练掌握性质定理是解题的关键模型3:“平行线+中点+对顶角”构造全等或相似模型我们把这种情况叫做平行线间夹中点.处理这种情况的一般方法是:延长过中点的线段和平行线相交,即“延长中线交平行”如图,AB/CD,点E是BC的中点,可延长DE交AB于点F。模型运用条件:构造8字型全等(平

    13、行线夹中点)。例1(2023上天津西青八年级统考期末)如图,已知等边,过边上一点P作于点E,点Q为延长线上一点,取,连接,交于M,已知的长为2,则等边三角形的边长为 【答案】4【详解】过P作交于F,如图所示:,是等边三角形,是等边三角形,在和中,故答案为:4【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用;熟练掌握等边三角形的性质与判定,证明三角形全等是解决问题的关键例2(2023山东济南校联考一模)如图,在菱形ABCD中,E、F分别是AB、BC边的中点,EPCD于点P,BAD=110,则FPC的度数是()A35B45C50D5

    14、5【答案】D【分析】延长PF、EB交于点G;连接EF,根据菱形的性质易证BGFCPF,根据全等三角形的性质可得PF=GF,即可得点F为PG的中点,又因GEP=90,根据直角三角形斜边上的中线等于斜边的一半可得FP=FG=FE,所以FPC=FGB=GEF;连接AC,即可得GEF=BAC=BAD=55,所以FPC的度数是55【详解】延长PF、EB交于点G;连接EF,四边形ABCD是菱形,AGDC,GBF=PCF,F是BC中点,BF=CF,在BGF和CPF中, ,BGFCPF,PF=GF,点F为PG的中点,GEP=90,FP=FG=FE,FPC=FGB=GEF,连接AC,则GEF=BAC=BAD=5

    15、5,FPC的度数是55故选D【点睛】本题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键例3(2023天津中考真题)如图,的顶点C在等边的边上,点E在的延长线上,G为的中点,连接若,则的长为 【答案】【分析】延长DC交EF于点M(图见详解),根据平行四边形与等边三角形的性质,可证CFM是等边三角形,BF=BE=EF=BC+CF=5,可求出CF=CM=MF=2,可得C、G是DM和DE的中点,根据中位线的性质,可得出CG=,代入数值即可得出答案【详解】解:如下图所示,延长DC交EF于点M,平行四边形的顶点C在等边的边上,是等边三角形,在平行四边形中,又是等边三角形, , G为的

    16、中点,是的中点,且是的中位线,故答案为:【点睛】本题考查了平行四边形的性质、等边三角形的性质、中位线等知识点,延长DC交EF于点M,利用平行四边形、等边三角形性质求出相应的线段长,证出是的中位线是解题的关键例4(2023下重庆黔江八年级统考期末)矩形与矩形,如图放置,点,共线,点,共线,连接,取的中点,连接若,则()ABCD【答案】B【分析】延长GH交AD于M点,由矩形的性质得出CD=CE=FG=1,BC=EF=CG=3,推出DG=CG-CD=2,HAM=HFG,由ASA证得AMHFGH,得出AM=FG=1,MH=GH,则MD=AD-AM=2,在RtMDG中,根据勾股定理可得GM,即可得出结果

    17、【详解】解:如图,延长GH交AD于点M,四边形ABCD与四边形CEFG都是矩形,CD=CE=FG=1,BC=EF=CG=2,DG=CG-CD=2-1=1,HAM=HFG,点H为AF的中点,AH=FH,在AMH和FGH中,AMHFGH(ASA),AM=FG=1,MH=GH,MD=AD-AM=2-1=1,在RtMDG中,故选:B【点睛】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理等知识;熟练掌握矩形的性质,证明三角形全等是解题的关键例5(2023浙江宁波校联考一模)如图,在平行四边形D中,CD2AD,BE垂直AD于点E,F为DC的中点,连接EF,BF,下列结论(1);(2);(3)四边形

    18、DEBC三角形EFB;(4), 其中正确结论的个数共有()A个B2个C3个D4个【答案】D【分析】延长EF交BC的延长线于G,取AB的中点H连接FH,根据四边形ABCD是平行四边形,CD2AD,F为DC的中点,可证明,则EF=FG,BEBG,又由H是AB的中点,得FH=AD=CD=CF=BC,所以四边形BCFH是菱形,通过这些条件,即可解决问题【详解】如图,延长EF交BC的延长线于G,取AB的中点H,连接FH,则AH=BH,(1)CD2AD,DF=FC,CF=CB四边形ABCD是平行四边形,故(1)正确;(2)四边形ABCD是平行四边形F为DC的中点,DF=CF在和中, ,故(2)正确;(3)

    19、,故(3)正确;(4), 四边形BCFH是菱形,故(4)正确;其中正确结论的个数共有4个,故选D【点睛】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题例6(2023吉林长春统考三模)【感知】如图,正方形中,点在边上,平分若我们分别延长与,交于点,则易证(不需要证明)【探究】如图,在矩形中,点在边的中点,点在边上,平分求证:【应用】在【探究】的条件下,若,直接写出的长【答案】【感知】见解析;【探究】见解析;【应用】【分析】感知:如图,根据平行线的性质和角平分

    20、线的定义可得出结论;探究:如题,作辅助线,证明AEDGEC,得到AD=CG=BC,再由感知中得到AF=FG,可得出结论;应用:设FC=x,则AF=x+6,BF=6-x,由勾股定理列方程可得结论【详解】感知:证明:如图四边形ABCD是正方形,ADBC,DAE=G,AE平分DAF,DAE=FAG,FAG=G,AF=FG探究:解:如图,分别延长与,交于点点E是CD边的中点,DE=EC.矩形,又,(ASA),是的平分线,即应用:解:如图,设FC=x,则AF=x+6,BF=6-x,点E是DC的中点,DE=2,DC=4,在RtABF中,由勾股定理得:AF2=AB2+BF2,(6+x)2=42+(6-x)2

    21、解得:,【点睛】本题主要考查的是四边形的综合题,掌握正方形的性质、角平分线的定义、等腰三角形的性质和判定以及全等三角形的判定和性质是解题的关键课后专项训练1(2023上河北张家口八年级统考期中)如图,在中,依据尺规作图痕迹,下列判断正确的是()结论:;结论:A,都对B对,错C错,对D,都错【答案】A【分析】本题考查角平分线和垂线段的画法,全等三角形的判定与性质,根据尺规作图痕迹可知,为的角平分线,为的垂线,可得,可判断结论,再由,可得结论正确【详解】解:由尺规作图痕迹可知,为的角平分线,为的垂线,为直角三角形,在和中,故结论正确;,故结论正确,故选:A2(2022河北石家庄校考模拟预测)如图,

    22、是半圆O的直径,C为半圆上一点,过O作交于点E,则的长为()ABCD【答案】B【分析】连接,由是半圆O的直径得到,则,由题意可知垂直平分,则,设,则,在中,由勾股定理得到,即,求出x的值即可【详解】解:连接,如图所示:是半圆O的直径,过O作交于点E,是的中点,垂直平分,设,则,在中,即,解得,即的长为,故选:B【点睛】此题考查了圆周角定理、勾股定理、线段垂直平分线的性质等知识,熟练掌握直径所对的圆周角是直角是解题的关键3(2022安徽合肥校考模拟预测)如图,矩形的对角线交于点,经过点且,分别与,交于点,若,则等于()AB2CD3【答案】A【分析】连接,由矩形的性质可得,由线段垂直平分线的性质可

    23、得,由勾股定理可得,求解即可【详解】解:如图,连接,四边形是矩形,是的垂直平分线, 在中,则,解得:,故选:A【点睛】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理,熟练掌握矩形的性质、线段垂直平分线的性质,添加适当的辅助线,构造直角三角形是解题的关键4(2023重庆九龙坡校考三模)如图,正方形的边长为12,点E为边上一点,点F为边上一动点,连接交于点G,连接,当时,则的长为()ABCD5【答案】D【分析】通过作辅助线,以及等腰三角形三线合一、梯形中位线定理得出,的长,再经过勾股定理及两个三角形相似计算出长,最终得到答案【详解】解:作,,,且,根据勾股定理得:,,解得,故答案选 D【点睛

    24、】本题考查了正方形的性质、等腰三角形的性质、勾股定理、梯形中位线定理、相似三角形的判定及应用等知识,其中相似三角形对应边成比例是解题的关键5(2023陕西西安校考三模)如图,在等腰中,点为的中点,于点E,则的值为()ABCD【答案】A【分析】连接,根据等腰三角形的性质得出,进而可得,根据正弦的定义即可求解【详解】解:连接,如图所示,故选:A【点睛】本题考查了求角的正弦值,等腰三角形的性质,得出是解题的关键6(2023广西贵港统考一模)如图,在平行四边形ABCD中,AD2AB,F是BC的中点,作AECD于点E,连接EF、AF,下列结论:2BAFBAD;EFAF;SABFSAEF;BFE3CEF其

    25、中一定成立的个数是()A1个B2个C3个D4个【答案】C【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出MBFECF,利用全等三角形的性质得出对应线段之间关系进而得出答案【详解】解:F是BC的中点,BFFC,在ABCD中,AD2AB,BC2AB2CD,BFFCAB,AFBBAF,AFBDAF,BAFFAD,2BAFBAD,故正确;延长EF,交AB延长线于M,四边形ABCD是平行四边形,MBFC,F为BC中点,BFCF,在MBF和ECF中,MBFECF(ASA),FEMF,CEFM,CEAE,AEC90,AECBAE90,FMEF,EFAF,故正确;EFFM,S

    26、AEFSAFM,E与C不重合,SABFSAEF,故错误;设FEAx,则FAEx,BAFAFB90x,EFA1802x,EFB90x+1802x2703x,CEF90x,BFE3CEF,故正确,故选:C【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出AEFDME7(2023黑龙江哈尔滨统考三模)如图,已知于点B,于点A,点E是的中点,若,则的长是 【答案】6.5【分析】延长交于点,设与相交于点G,先证明,求出的长,再由“”可证,可得,由勾股定理可求的长,即可求的长【详解】解:如图,延长交于点,设与相交于点G,点是的中点,且, ,在中, 故答案为:6.5

    27、【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质及勾股定理,添加恰当辅助线构造全等三角形是本题的关键8(2023山东临沂统考一模)如图,的顶点在等边的边上,点在的延长线上,为的中点,连接,若,则的长为 【答案】3【分析】根据平行四边形的性质和等边三角形的性质,可以得到和的长,然后可以证明和全等,然后即可得到的长【详解】解:如图,延长交于点,四边形是平行四边形,是等边三角形,为的中点,在和中,是等边三角形,故答案为:3【点睛】本题考查平行四边形的性质,等边三角形的判定与性质,全等三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答9(2023上山西大同八年级校考阶

    28、段练习)如图,在中,边的垂直平分线与的平分线交于点交的延长线于点,交于点,则的长是 【答案】7【分析】本题考查了线段垂直平分线的性质、角平分线的性质、三角形全等的判定与性质,连接,由线段垂直平分线的性质得出,由角平分线的性质得出,证明得出,证明得出,再计算出,由此即可得解,熟练掌握线段垂直平分线的性质、角平分线的性质、三角形全等的判定与性质是解此题的关键【详解】解:如图,连接,垂直平分,平分,在和中,在和中,故答案为:10(2023山东临沂统考二模)在中,将沿翻折到,的垂直平分线与相交于点E若,则的长为 【答案】【分析】连接,根据线段垂直平分线的性质得出,设,在中,利用勾股定理可求,利用折叠的

    29、性质和等腰三角形的性质可证,利用勾股定理可得,由可构建关于x的方程,然后解方程即可求解【详解】解:连接,的垂直平分线与相交于点E,设,则,在中,由勾股定理得,即,由折叠可知,即,即,解得,(不符合题意,舍去),故答案为:【点睛】本题主要考查了折叠的性质、垂直平分线的性质、等腰三角形的性质、勾股定理、一元二次方程的解法等知识点,正确作出辅助线、构造合适的直角三角形是解答本题的关键11(2023山东泰安统考二模)在中,D为中点,则 【答案】4【分析】连接,分别证明,得到,再利用勾股定理进行求解即可【详解】解:在中, ,连接,D为中点,同法可证:,在中,故答案为:4【点睛】本题考查等腰三角形的性质,

    30、全等三角形的判定和性质,勾股定理解题的关键是添加辅助线,构造全等三角形12(2023江西萍乡校考模拟预测)如图,是等边三角形,是边上的高,点是射线上的动点,连接,交直线于点,当是等腰三角形时,的长为 【答案】,或【分析】根据是等腰三角形,则可分三种情况进行讨论当时,当时,当时,分别画出图形,解直角三角形即可求解【详解】是等边三角形,是等腰三角形,则可分三种情况进行讨论当时,如图(1), 则,为等边三角形,为的中点,当时,如图(2),则过点作于点,当时,如图(3),则,过点作交的延长线于点,则,综上,当是等腰三角形时,的长为,或故答案为:,或【点睛】本题考查等腰三角的定义,等边三角形的性质与判定

    31、,解直角三角形,分类讨论是解题的关键13(2023上江苏南通九年级校考阶段练习)如图,在矩形ABCD中,E,F分别为边CD,AD的中点,CF与EA、EB分别交于点M,N已知AB8,BC12,则MN的长为 【答案】/【分析】延长,交于点Q,已知,根据勾股定理得,然后根据AAS证明出,然后得到,根据相似三角形对应边成比例可得的长;延长CF和BA,交于W,根据求出的长度,即可求出MN的长【详解】解:如图所示,延长,交于点Q,四边形ABCD是矩形,F为AD的中点,在中,由勾股定理得:,E为CD的中点,在和中,即,如图所示,延长CF和BA,交于W,在和中,解得:,故答案为:【点睛】此题考查了全等三角形的

    32、性质和判定,相似三角形的性质和判定,解题的关键是作出辅助线构造8字形全等三角形及相似三角形14(2023上浙江绍兴八年级校考期中)两个同样大小的含角的三角尺,按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点,且另三个锐角顶点,在同一直线上,为中点,已知(1)求的长(2)求的长【答案】(1)1(2)【分析】本题主要考查了等腰三角形的判定与性质、勾股定理等知识,熟练掌握等腰三角形的性质是解题关键(1)连接,首先利用勾股定理解得,再根据等腰三角形“三线合一”的性质可得,然后证明为等腰直角三角形,即可求得的长;(2)由题意可知,然后在中,利用勾股定理解得,根据即可求得答案【详解

    33、】(1)解:连接,如下图,根据题意,为中点,且,;(2)根据题意,又,在中,15(2023上浙江丽水九年级统考期中)已知:如图,在中,以边为直径作半圆,分别交于点(1)求证:;(2)若,求的度数【答案】(1)见解析(2)40【分析】本题考查的是圆周角定理、等腰三角形的性质及圆心角、弧、弦的关系,熟知半圆(或直径)所对的圆周角是直角是解题的关键(1)连接,根据圆周角定理可知,故,由等腰三角形的性质即可得出结论;(2)由等腰三角形的性质求出的度数,进而可得出结论【详解】(1)证明:连接,是直径,;(2)解:,16(2023江苏无锡校考二模)如图,中,点、分别在、边上,(1)求证:;(2)若,当时,

    34、求的长【答案】(1)见解析(2)【分析】(1)先证,再根据全等三角形的证明方法证明即可;(2)根据等边三角形的性质和勾股定理求出,由三角形的面积得,最后根据勾股定理和全等三角形的性质可得答案【详解】(1)解:,即,在与中,;(2)过点A作于点,如下图,即,解得:,由(1)得:,【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,勾股定理,解题的关键是掌握全等三角形的判定与性质和勾股定理17(2023上四川成都九年级校考期中)中,垂直平分,交线段于点E(点E与点C不重合),点F为直线上一点,点G为边上一点(点G与点A不重合),且(1)如图1,当时,求证:线段;(2)如图2,当时,猜想线段

    35、和的数量关系,并说明理由;(3)若,求线段的长【答案】(1)见解析(2),理由见解析(3)或【分析】(1)如图1,连接,根据线段垂直平分线的性质得到,根据等腰直角三角形的性质得到,根据全等三角形的性质即可得到结论;(2)连接,先求,再由线段垂直平分线的性质得,则,然后证,进而得出结论;(3)过作于,由等腰三角形的在得,则,分两种情况,当在上时;当点在上时;证,得,分别求解即可【详解】(1)(1)连接, 垂直平分, ,;(2),理由如下:如图,连接,垂直平分, ,,,在中,;(3)过作于,当在上时, 如图, 连接,垂直平分,在的左侧, ,,即 ,解得: ;当点在上,如图,连接,同可得,解得:;综

    36、上所述,的长为或【点睛】本题是三角形综合题目,考查了等腰三角形的性质、线段垂直平分线的性质、全等三角形的判定和性质、相似三角形的判定和性质、锐角三角函数定义等知识,本题综合性强,正确的作出辅助线是解题的关键,属于中考常考题型18(2022上辽宁沈阳八年级校考期末)【问题】:如图1,等腰直角三角形中,是的角平分线,点E为上一点,交延长线于点F,连接,探究,之间的数量关系【分析】:小明在思考这道题时,先通过测量猜想出,然后他想到了老师讲过的“手拉手”模型,便尝试着过点E作的垂线与相交于点G(如图2),通过证明,最终探究出,之间的数量关系(1)请根据小明的思路,补全的证明过程;(2)请直接写出,之间

    37、的数量关系;【应用】(3)当时,请直接写出的长为 ;【拓展】(4)若的中点为点M,当B,E,M三点共线时,请直接写出的长为 【答案】(1)证明见解析;(2);(3)(4)【分析】(1)由等腰直角三角形的性质和可以证得,又由,可证得,再证明,即可证得答案;(2)由(1)知是等腰直角三角形,可得,同时由(1)证得的可知,即可得到答案;(3)将,代入即可求得答案;(4)由(1)证得的可知,利用等腰三角形的三线合一性质可得,是的垂直平分线,从而得到,最后代入(2)的结论中即可求得答案【详解】(1)过点E作交于点G,则,在等腰直角三角形中,是的角平分线,与的交点记作点H, ;(2)解:,理由:由(1)知

    38、,根据勾股定理得,由(1)知,;(3)解:由(2)知,故答案为:(4)解:如图,在中,由(1)知,是的中点, ,即是的垂直平分线, 点B,E,M三点共线,是的垂直平分线, ,由(2)知,故答案为:【点睛】本题主要考查了全等三角形的判定与性质,等腰三角形的三线合一性质,直角三角形的性质,勾股定理,线段垂直平分线的性质,灵活运用以上定理是解答本题的关键19(2023辽宁模拟预测)【问题初探】(1)在数学活动课上,李老师给出如下问题:如图1,在中,垂足为B,且求证:如图2,小鹏同学从结论的角度出发给出如下解题思路:在上截取,连接,将线段与,之间的数量关系转化为与之间的数量关系如图3,小亮同学从这个条

    39、件出发给出另一种解题思路:作的垂直平分线,分别与,交于F,E两点,连接,将转化为与之间的数量关系请你选择一名同学的解题思路,写出证明过程【类此分析】(2)李老师发现之前两名同学都运用转化思想,将证明三条线段的关系转化为证明两条线段的关系;为了帮助学生更好地感悟转化思想,李老师将图1进行变换并提出了下面问题,请你解答如图4,在中,过点A作(点D与点C在同侧),若求证:【学以致用】(3)如图5,在四边形中,求四边形的面积 【答案】(1)证明见解析;(2)证明见解析;(3)【分析】(1)选择小鹏同学的解题思路,利用垂直平分线的性质、三角形外角的性质,可得,进而可证;选择小亮同学的解题思路,先证,推出

    40、,再根据等腰三角形“三线合一”证明,进而可证;(2)过点A作交的延长线于点E,证明四边形是平行四边形,推出,在上截取,同(1)可证;(3)延长交的延长线于点E,作于点H,作于点F,先通过导角证明,同(1)可得再利用勾股定理、锐角三角函数解直角三角形,求出,的底和高,根据四边形的面积即可求解【详解】解:(1)选择小鹏同学的解题思路,证明如下:如图, ,是线段的垂直平分线,又,;选择小亮同学的解题思路,证明如下:如图,是线段的垂直平分线,又,;(2)证明如下:如图,过点A作交的延长线于点E,在上截取,连接, ,四边形是平行四边形,又, 是线段的垂直平分线,又,;(3)如图,延长交的延长线于点E,作

    41、于点H,作于点F, ,又,同(1)可证,又,设,则,解得,(舍),四边形的面积【点睛】本题考查解直角三角形,等腰三角形的判定和性质,三角形外角的性质,平行四边形的判定和性质,垂直平分线的性质,勾股定理等,第3问难度较大,解题的关键是正确作出辅助线,注意应用前两问的结论20(2022黑龙江牡丹江统考中考真题)在菱形和正三角形中,是的中点,连接、(1)如图1,当点在边上时,写出与的数量关系 (不必证明)(2)如图2,当点在的延长线上时,线段、有怎样的数量关系,写出你的猜想,并给予证明;(3)如图3,当点在的延长线上时,线段、又有怎样的数量关系,写出你的猜想(不必证明)【答案】(1)(2),证明见解

    42、析(3)【分析】(1)延长交于点,利用,得出,得到,是的中垂线,在中,利用正切函数即可求解;(2)延长交于点,连接,先证明,再证明,利用在中,即可求解;(3)延长到,使,连接,作FEDC,先证,再证,利用在中,即可求解【详解】(1)解:如图1,延长交于点,是的中点,PD=PF,是正三角形,BG=FG,四边形是菱形,CD=CB,在和中,DE=BG,又CD=CB,是的中垂线,AB/CD,ABC=60,BCD=180-ABC=120,PCG=60,在中, (2)解:,理由如下:如图2,延长交于点,连接, 是正三角形,BG=FG,CBG=180-ABC-GBF=60,四边形是菱形,CD=CB,CDA=ABC=60,DCB=180-60=120,在和中,在和中, (3)解:猜想: 证明:如图3,延长到,使,连接,作FEDC,PFE=PDC,是线段的中点,FBG是等边三角形,BGF=60,FG=BG,HD=BG,四边形ABCD是菱形,AB/CD,AB/EF,EFG=180-60=120,四边形是菱形,点、又在一条直线上,GBC=HDC,即, 【点睛】本题主要考查了等边三角形的性质、菱形的性质、全等三角形的判定和性质、解直角三角形等,熟练掌握和灵活运用相关知识是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题38 重要的几何模型之中点模型(一)(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-834984.html
    相关资源 更多
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(轻巧夺冠).docx冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(轻巧夺冠).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(考试直接用).docx冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(考试直接用).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(综合卷).docx冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(综合卷).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(精练).docx冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(精练).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(满分必刷).docx冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(满分必刷).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(模拟题).docx冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(模拟题).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(巩固).docx冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(巩固).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(实用).docx冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(实用).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(完整版).docx冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(完整版).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(夺分金卷).docx冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(夺分金卷).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(培优b卷).docx冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(培优b卷).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(b卷).docx冀教版五年级下册数学第四单元 分数乘法 测试卷附参考答案(b卷).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷精选.docx冀教版五年级下册数学第四单元 分数乘法 测试卷精选.docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷精品(考点梳理).docx冀教版五年级下册数学第四单元 分数乘法 测试卷精品(考点梳理).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷精品(夺冠系列).docx冀教版五年级下册数学第四单元 分数乘法 测试卷精品(夺冠系列).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷精品(名校卷).docx冀教版五年级下册数学第四单元 分数乘法 测试卷精品(名校卷).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷精品(各地真题).docx冀教版五年级下册数学第四单元 分数乘法 测试卷精品(各地真题).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷精品含答案.docx冀教版五年级下册数学第四单元 分数乘法 测试卷精品含答案.docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷答案免费下载.docx冀教版五年级下册数学第四单元 分数乘法 测试卷答案免费下载.docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷标准卷.docx冀教版五年级下册数学第四单元 分数乘法 测试卷标准卷.docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷最新.docx冀教版五年级下册数学第四单元 分数乘法 测试卷最新.docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷新版.docx冀教版五年级下册数学第四单元 分数乘法 测试卷新版.docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷往年题考.docx冀教版五年级下册数学第四单元 分数乘法 测试卷往年题考.docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷带答案(巩固).docx冀教版五年级下册数学第四单元 分数乘法 测试卷带答案(巩固).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷带答案(培优a卷).docx冀教版五年级下册数学第四单元 分数乘法 测试卷带答案(培优a卷).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷带答案(a卷).docx冀教版五年级下册数学第四单元 分数乘法 测试卷带答案(a卷).docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷带答案解析.docx冀教版五年级下册数学第四单元 分数乘法 测试卷带答案解析.docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷完整.docx冀教版五年级下册数学第四单元 分数乘法 测试卷完整.docx
  • 冀教版五年级下册数学第四单元 分数乘法 测试卷学生专用.docx冀教版五年级下册数学第四单元 分数乘法 测试卷学生专用.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1