专题6.4数列的综合应用(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题6.4 数列的综合应用原卷版 专题 6.4 数列 综合 应用 原卷版
- 资源描述:
-
1、6.4 数列的综合应用思维导图典型例题分析考向一 求通项公式(2019课标理,19,12分)已知数列an和bn满足a1=1,b1=0,4an+1=3an-bn+4,4bn+1=3bn-an-4.(1)证明:an+bn是等比数列,an-bn是等差数列;(2)求an和bn的通项公式.思路分析(1)将两递推关系式左、右两边相加可得an+1+bn+1=12(an+bn),从而证得数列an+bn为等比数列;将两递推关系式左、右两边相减可得an+1-bn+1=an-bn+2,从而证得数列an-bn为等差数列.(2)由(1)可求出an+bn,an-bn的通项公式,从而得an,bn.考向二 求和公式及其应用(
2、2016课标文,17,12分)已知an是公差为3的等差数列,数列bn满足b1=1,b2=13,anbn+1+bn+1=nbn.(1)求an的通项公式;(2)求bn的前n项和.考向三 求参数问题已知数列an的前n项和Sn=1+an,其中0.(1)证明an是等比数列,并求其通项公式;(2)若S5=3132,求.思路分析(1)先由题设利用an+1=Sn+1-Sn得到an+1与an的关系式,要证数列是等比数列,关键是看an+1与an之比是否为一常数,其中说明an0是非常重要的.(2)利用第(1)问的结论解方程求出.考向四 构造法在数列中的应用数列an满足a1=1,a2=2,an+2=2an+1-an+
3、2.(1)设bn=an+1-an,证明bn是等差数列;(2)求an的通项公式.评析本题着重考查等差数列的定义、前n项和公式及“累加法”求数列的通项等基础知识,同时考查运算变形的能力.考向五 数列求和的综合问题(2021全国乙文,19,12分)设an是首项为1的等比数列,数列bn满足bn=nan3.已知a1,3a2,9a3成等差数列.(1)求an和bn的通项公式;(2)记Sn和Tn分别为an和bn的前n项和.证明:TnSn2.解题指导(1)利用等差中项的概念建立等式,通过等比数列的通项公式即可求出结果;(2)利用等比数列的求和公式算出Sn,对于数列bn,利用错位相减法求出Tn,再利用比较大小的基
4、本方法作差法即可证明不等式.已知数列an的前n项和为Sn,a1=-94,且4Sn+1=3Sn-9(nN*).(1)求数列an的通项公式;(2)设数列bn满足3bn+(n-4)an=0(nN*),记bn的前n项和为Tn,若Tnbn对任意nN*恒成立,求实数的取值范围.方法总结一般地,如果an是等差数列,bn是等比数列,求数列anbn的前n项和时,可采用错位相减法.在写“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“Sn-qSn”的表达式.基础题型训练一、单选题1在等差数列中,已知,公差,则( )A10B12C14D162若数列的前4项分别是,则该数列的一个通项公式
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
