专题8二次函数与矩形存在性问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(全国通用)(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 二次 函数 矩形 存在 问题 挑战 2022 年中 数学 压轴 秘笈 揭秘 全国 通用 原卷版
- 资源描述:
-
1、挑战2023年中考数学压轴题之学霸秘笈大揭秘专题8二次函数与矩形存在性问题1.矩形的判定:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角为直角的四边形是矩形2.题型分析矩形除了具有平行四边形的性质之外,还有“对角线相等”或“一个角为直角”,因此相比起平行四边形,坐标系中的矩形满足以下3个等式:因此在矩形存在性问题最多可以有3个未知量,代入可以得到三元一次方程组,可解确定了有3个未知量,则可判断常见矩形存在性问题至少有2个动点,多则可以有3个下:同时,也可以先根据A、B的坐标求出直线AB的解析式,进而得到直线AD或BC的解析式,从而确定C或D的坐标.
2、【例1】(2022泸州)如图,在平面直角坐标系xOy中,已知抛物线yax2+x+c经过A(2,0),B(0,4)两点,直线x3与x轴交于点C(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x3交于点D,E,且BDO与OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由【例2】(2022绥化)如图,抛物线yax2+bx+c交y轴于点A(0,4),并经过点C(6,0),过点A作ABy轴交抛物线于点B,抛物线的对称轴为直线
3、x2,D点的坐标为(4,0),连接AD,BC,BD点E从A点出发,以每秒个单位长度的速度沿着射线AD运动,设点E的运动时间为m秒,过点E作EFAB于F,以EF为对角线作正方形EGFH(1)求抛物线的解析式;(2)当点G随着E点运动到达BC上时,求此时m的值和点G的坐标;(3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由【例3】(2022黔东南州)如图,抛物线yax2+2x+c的对称轴是直线x1,与x轴交于点A,B(3,0),与y轴交于点C,连接AC(1)求此抛物线的解析式;(2)已知点D是第一象限内抛物线上的一个
4、动点,过点D作DMx轴,垂足为点M,DM交直线BC于点N,是否存在这样的点N,使得以A,C,N为顶点的三角形是等腰三角形若存在,请求出点N的坐标,若不存在,请说明理由;(3)已知点E是抛物线对称轴上的点,在坐标平面内是否存在点F,使以点B、C、E、F为顶点的四边形为矩形,若存在,请直接写出点F的坐标;若不存在,请说明理由【例4】(2022梁山县一模)如图,在平面直角坐标系中,抛物线yax2+bx+c(a0)与x轴交于A(2,0)、B(4,0)两点,与y轴交于点C,且OC2OA(1)试求抛物线的解析式;(2)直线ykx+1(k0)与y轴交于点D,与抛物线交于点P,与直线BC交于点M,记m,试求m
5、的最大值及此时点P的坐标;(3)在(2)的条件下,m取最大值时,点Q是x轴上的一个动点,点N是坐标平面内的一点,是否存在这样的点Q、N,使得以P、D、Q、N四点组成的四边形是矩形?如果存在,请求出点N的坐标;如果不存在,请说明理由1(2022武功县模拟)在平面直角坐标系中,已知抛物线L1:yx2+bx+c(b、c为常数)与x轴交于A(6,0)、B(2,0)两点(1)求抛物线L1的函数表达式;(2)将该抛物线L1向右平移4个单位长度得到新的抛物线L2,与原抛物线L1交于点C,点D是点C关于x轴的对称点,点N在平面直角坐标系中,请问在抛物线L2上是否存在点M,使得以点C、D、M、N为顶点的四边形是
6、以CD为边的矩形?若存在,求出点M的坐标;若不存在,请说明理由2(2022东莞市校级一模)如图,在平面直角坐标系中,抛物线y+bx+c与x轴的正半轴交于点D,与y轴交于点C,点A在抛物线上,ABy轴于点BABC绕点B逆时针旋转90得到OBE,连接DE当+bx+c0时,x的取值范围是x2(1)求该抛物线的解析式;(2)求证:四边形OBED是矩形;(3)在线段OD上找一点N,过点N作直线m垂直x轴,交OE于点F,连接DF,当DNF的面积取得最大值时,求点N的坐标,在此基础上,在直线m上找一点P,连接OP、DP使得OPD+DOE90,求点P的坐标3(2022石家庄二模)如图,抛物线yx2+bx+c(
7、c0)与x轴交于点A(1,0),B(点A在点B左侧),与y轴交于点C,连接BC(1)点C的纵坐标为 (用含b的式子表示),OBC 度;(2)当b1时,若点P为第一象限内抛物线上一动点,连接BP,CP,求BCP面积的最大值,并求出此时点P的坐标;(3)已知矩形ODEF的顶点D,F分别在x轴、y轴上,点E的坐标为(3,2)抛物线的顶点为Q,当AQ的中点落在直线EF上时,求点Q的坐标;当抛物线在矩形内部的部分对应的函数值y随x的增大而减小时,请直接写出b的取值范围4(2022滨海县一模)如图1,在平面直角坐标中,抛物线与x轴交于点A(1,0)、B(4,0)两点,与y轴交于点C,连接BC,直线BM:y
8、2x+m交y轴于点MP为直线BC上方抛物线上一动点,过点P作x轴的垂线,分别交直线BC、BM于点E、F(1)求抛物线的表达式:(2)当点P落在抛物线的对称轴上时,求PBC的面积:(3)若点N为y轴上一动点,当四边形BENF为矩形时,求点N的坐标;在的条件下,第四象限内有一点Q,满足QNQM,当QNB的周长最小时,求点Q的坐标5(2022石家庄模拟)某公园有一个截面由抛物线和矩形构成的观景拱桥,如图1所示,示意图如图2,且已知图2中矩形的长AD为12米,宽AB为4米,抛物线的最高处E距地面BC为8米(1)请根据题意建立适当的平面直角坐标系,并求出抛物线的函数解析式;(2)若观景拱桥下放置两根长为
9、7米的对称安置的立柱,求这两根立柱之间的水平距离;(3)现公园管理处打算在观景桥侧面搭建一个矩形“脚手架”PQMN(如图2),对观景桥表面进行维护,P,N点在抛物线上,Q,M点在BC上,为了筹备材料,需求出“脚手架”三根支杆PQ,PN,MN的长度之和的最大值,请你帮管理处计算一下6(2022朝阳区校级一模)已知二次函数yx22mxm与y轴交于点M,直线ym+5与y轴交于点A,与直线x4交于点B,直线y2m与y轴交于点D(A与D不重合),与直线x4交于点C,构建矩形ABCD(1)当点M在线段AD上时,求m的取值范围(2)求证:抛物线yx22mxm与直线ym+5恒有两个交点(3)当抛物线在矩形内部
10、的函数值y随着x的增大而增大或y随x的增大而减小时,求m的取值范围(4)当抛物线在矩形内部(包括边界)最高点的横坐标等于点B到x轴距离的时,直接写出m的取值范围7(2022长春一模)已知抛物线yx22mx+2m+1(1)写出抛物线yx22mx+2m+1的顶点坐标(用含m的式子表示)(2)当x1时,y随x的增大而增大,则m的取值范围是 (3)当1x2时,函数yx22mx+2m+1的图象记为G,设图象G的最低点的纵坐标为y0当y01时,求m的值(4)当m0时,分别过点A(2,1)、B(2,4)作y轴垂线,垂足分别为点D、点C,抛物线在矩形ABCD内部的图象(包括边界)的最低点到直线y2的距离等于最
11、高点到x轴的距离,直接写出m的值8(2021咸丰县一模)如图,在平面直角坐标系中,抛物线与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l,P是该抛物线上一动点,其横坐标为m,过点P作PQl于点Q,M是直线l上的一点,其纵坐标为以PQ,QM为边作矩形PQMN(1)求抛物线的解析式;(2)当点Q与点M重合时,求m的值;(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值;(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,求m的取值范围9(2022白山模拟)在平面直角坐标系中,抛物线yx2+2x+b(b为常数,b0)与y轴交于点A,且
12、点A的坐标为(0,3),过点A作垂直于y轴的直线lP是该抛物线上的任意一点,其横坐标为m,过点P作PQl于点Q,M是直线l上的一点,其横坐标为m+1以PQ,QM为边作矩形PQMN(1)求b的值;(2)当点Q与点M重合时,求m的值;(3)当矩形PQMN为正方形时,求m的值;(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而增大时,直接写出m的取值范围10(2021吉林四模)如图,在平面直角坐标系中,抛物线yx2+bx与x轴交于点A(5,0),与该抛物线的对称轴l交于点B,作直线ABP是该抛物线上的任意一点,其横坐标为m,过点P作x轴的垂线交AB于点Q,过点P作PNl于点N,以PQ、
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-836143.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
