分享
分享赚钱 收藏 举报 版权申诉 / 6

类型专题复习一待定系数法求二次函数表达式.docx

  • 上传人:a****
  • 文档编号:836791
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:6
  • 大小:140.05KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题 复习 待定系数法 二次 函数 表达式
    资源描述:

    1、专题复习一 待定系数法求二次函数表达式二次函数表达式的三种形式:一般式y=ax2+bx+c(a0);顶点式y=a(x-m)2+k(a0);交点式(分解式)y=a(x-x1)(x-x2),求函数表达式时要根据已知条件合理选择表达式形式.1.一抛物线和抛物线y=-2x2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的函数表达式为(B).A.y=-2(x-1)2+3 B.y=-2(x+1)2+3 C.y=-(2x+1)2+3 D.y=-(2x-1)2+32.如图所示,在平面直角坐标系中,二次函数y=ax2+bx+c的图象顶点为点A(-2,-2),且过点B(0,2),则y关于x的函数表达

    2、式为(D).A.y=x2+2 B.y=(x-2)2+2 C.y=(x-2)2-2 D.y=(x+2)2-2(第2题) (第3题) (第4题) (第8题)3.如图所示为抛物线的图象,根据图象可知,抛物线的函数表达式可能为(A).A.y=-x2+x+2 B.y=-x2-x+2 C.y=-x2-x+1 D.y=x2-x-24.如图所示,二次函数y=x2+bx+c的图象过点B(0,-2).该二次函数的图象与反比例函数y=-的图象交于点A(m,4),则这个二次函数的表达式为(A).A.y=x2-x-2 B.y=x2-x+2 C.y=x2+x-2 D.y=x2+x+25.抛物线y=ax2+bx+c(a0)

    3、经过(1,2)和(-1,-6)两点,则a+c= -2 6.已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y轴交于点C(0,3),则二次函数的表达式为 y=x2-4x+3 7.老师给出一个函数,四位同学各指出了这个函数的一个性质:函数的图象不经过第三象限;函数的图象经过第一象限;当x2时,y随x的增大而减小;当x2时,y0已知这四位同学的叙述都正确,请构造出满足上述所有性质的一个函数: y=(x-2)2(不唯一) 8.如图所示,将RtAOB绕点O逆时针旋转90,得到A1OB1,若点A的坐标为(2,1),过点A,O,A1的抛物线的函数表达式为 y=x2-x 9.

    4、根据下列条件求二次函数的表达式.(1)二次函数y=ax2+bx+c与x轴的两个交点的横坐标是-,与y轴交点的纵坐标是-5,求这个二次函数的表达式(2)二次函数图象的顶点在x轴上,且图象过点(2,-2),(-1,-8),求此函数的表达式【答案】(1)设抛物线的函数表达式为y=a(x+)(x-).把点(0,-5)代入,得a(-)=-5,解得a=.抛物线的函数表达式为y=(x+)(x-)=x2-x-5.(2)设抛物线的函数表达式为y=a(x-k)2.把点(2,-2),(-1,-8)代入,得,解得,或.抛物线的函数表达式为y=-(x-5)2或y=-2(x-1)2. (第10题)10.在平面直角坐标系中

    5、,抛物线y=2x2+mx+n经过点A(0,-2),B(3,4).(1)求抛物线的函数表达式及对称轴.(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D的纵坐标为t,记抛物线在A,B两点之间的部分为图象G(包含A,B两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.【答案】(1)把点A(0,-2),B(3,4)代入抛物线y=2x2+mx+n,得,解得.抛物线的函数表达式为y=2x2-4x-2,对称轴为直线x=1.(第10题答图)(2)如答图所示,作出抛物线在A,B两点之间的图象G.由题意得C(-3,-4),二次函数y=2x2-4x-2的最小值为-4,由

    6、函数图象得出点D纵坐标的最小值为-4.设直线BC的表达式为y=kx+b,将点B,C的坐标代入得,解得.直线BC的表达式y=x.当x=1时,y=,t的取值范围是-4t.11.已知二次函数y=ax2+bx+c(a0)的图象经过点A(1,0),B(0,-3),且对称轴为直线x=2,则这条抛物线的顶点坐标为(B).A.(2,3) B.(2,1) C.(-2,1) D.(2,-1)12.若一次函数y=x+m2与y=2x+4的图象交于x轴上同一点,则m的值为(D).A.2 B.2 C. D.13.若所求的二次函数图象与抛物线y=2x2-4x-1有相同的顶点,且在对称轴的左侧y随x的增大而增大,在对称轴的右

    7、侧y随x的增大而减小,则所求二次函数的表达式为(D).A.y=-x2+2x-5 B.y=ax2-2ax+a-3(a0)C.y=-2x2-4x-5 D.y=ax2-2ax+a-3(a0)14.如图所示,已知二次函数y=x2+bx+c的图象经过点(-1,0),(1,-2),该图象与x轴的另一个交点为点C,则AC长为 3 (第14题) (第16题)15.已知二次函数的图象经过原点及点(-2,-2),且图象与x轴的另一个交点到原点的距离为4,那么该二次函数的表达式为 y=x2+2x或y=-x2+x 16.如图所示,直线y=x+2与x轴交于点A,与y轴交于点B,ABBC,且点C在x轴上.若抛物线y=ax

    8、2+bx+c以点C为顶点,且经过点B,则这条抛物线的函数表达式为 y=x2-2x+2 (第17题)17.如图所示,RtAOB的直角边OA在x轴上,OA=2,AB=1,将RtAOB绕点O逆时针旋转90得到RtCOD,抛物线y=-x2+bx+c经过B,D两点.(1)求二次函数的表达式.(2)连结BD,点P是抛物线上一点,直线OP把BOD的周长分成相等的两部分,求点P的坐标.【答案】(1)RtAOB绕点O逆时针旋转90得到RtCOD,CD=AB=1,OC=OA=2.则点B(2,1),D(-1,2),代入y=-x2+bx+c,得,解得.二次函数的表达式为y=-x2+x+.(第17题答图)(2)如答图所

    9、示,OA=2,AB=1,B(2,1).直线OP把BOD的周长分成相等的两部分,且OB=OD,DQ=BQ,即点Q为BD的中点,D(-1,2).点Q坐标为(,).设直线OP的表达式为y=kx,将点Q坐标代入,得k=,解得k=3.直线OP的表达式为y=3x.由得,.点P的坐标为(1,3)或(-4,-12). (第18题)18.在平面直角坐标系中,抛物线y=ax2+bx+2过B(-2,6),C(2,2)两点.(1)试求抛物线的函数表达式.(2)记抛物线的顶点为D,求BCD的面积.(3)若直线y=-x向上平移b个单位所得的直线与抛物线段BDC(包括端点B,C)部分有两个交点,求b的取值范围.【答案】(1

    10、)由题意,解得.抛物线的函数表达式为y=x2-x+2. (2)如答图所示,y=x2-x+2= (x-1)2+.顶点D的坐标为(1,),对称轴为直线x=1.设直线BC的函数表达式为y=kx+b.将B(-2,6),C(2,2)代入,得,解得.直线BC的函数表达式为y=-x+4,对称轴与BC的交点H(1,3).SBDC=SBDH+SDHC=3+1=3. (3)由消去y得x2-x+4-2b=0,当=0时,直线与抛物线相切,1-4(4-2b)=0,解得b=.当直线y=-x+b经过点C时,b=3,当直线y=-x+b经过点B时,b=5.直线y=-x向上平移b个单位所得的直线与抛物线段BDC(包括端点B,C)

    11、部分有两个交点,b3.(第19题)19.【贵港】将如图所示的抛物线向右平移1个单位,再向上平移3个单位后,得到的抛物线的函数表达式为(A).A.y=(x-1)2+1 B.y=(x+1)2+1 C.y=2(x-1)2+1 D.y=2(x+1)2+120.【广州】已知抛物线y1=-x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(-1,5),点A与y1的顶点B的距离是4.(1)求y1的函数表达式.(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的函数表达式.【答案】(1)抛物线y1=-x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(-1,5),

    12、点A与y1的顶点B的距离是4.B(-1,1)或(-1,9).-=-1,=1或9,解得m=-2,n=0或8.y1=-x2-2x或y1=-x2-2x+8. (2)当y1=-x2-2x时,抛物线与x轴的交点是(0,0)和(-2,0).y1的对称轴与y2交于点A(-1,5),y1与y2都经过x轴上的同一点(-2,0).把(-1,5),(-2,0)代入得,解得.y2=5x+10.当y1=-x2-2x+8时,令-x2-2x+8=0,解得x=-4或2.y2随着x的增大而增大,且过点A(-1,5),y1与y2都经过x轴上的同一点(-4,0).把(-1,5),(-4,0)代入得,解得.y2=x+.综上可得y2=

    13、5x+10或y2=x+.21.如图所示,直线y=-x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B,C和点A(-1,0) (1)求B,C两点的坐标(2)求该二次函数的表达式(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时点E的坐标(第21题) 图1 图2(第21题答图)【答案】(1)令x=0,可得y=2;令y=0

    14、,可得x=4,B,C两点的坐标分别为B(4,0),C(0,2).(2)设二次函数的表达式为y=ax2+bx+c,将点A,B,C的坐标代入表达式得,解得.该二次函数的表达式为y=-x2+x+2.(3)存在.y=-x2+x+2=- (x-)2+,抛物线的对称轴是直线x=.OD=.C(0,2),OC=2.在RtOCD中,由勾股定理得CD=.PCD是以CD为腰的等腰三角形,CP1=DP2=DP3=CD.如答图1所示,作CH对称轴直线x=于点H,HP1=HD=2,DP1=4.P1(,4),P2(,),P3(,-).(4)如答图2所示,过点C作CMEF于点M,设E(a,-a+2),F(a,-a2+a+2),EF=-a2+a+2-(-a+2)=-a2+2a(0a4).S四边形CDBF=SBCD+SCEF+SBEF=BDOC+EFCM+EFBN=+a(-a2+2a)+(4-a)(-a2+2a)=-a2+4a+=-(a-2)2+,当a=2时,四边形CDBF的面积最大,最大面积为,此时点E坐标为(2,1).

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题复习一待定系数法求二次函数表达式.docx
    链接地址:https://www.ketangku.com/wenku/file-836791.html
    相关资源 更多
  • 人教版四年级下学期期末质量监测数学试题附答案(能力提升).docx人教版四年级下学期期末质量监测数学试题附答案(能力提升).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(考试直接用).docx人教版四年级下学期期末质量监测数学试题附答案(考试直接用).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(综合题).docx人教版四年级下学期期末质量监测数学试题附答案(综合题).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(精练).docx人教版四年级下学期期末质量监测数学试题附答案(精练).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(研优卷).docx人教版四年级下学期期末质量监测数学试题附答案(研优卷).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(模拟题).docx人教版四年级下学期期末质量监测数学试题附答案(模拟题).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(巩固).docx人教版四年级下学期期末质量监测数学试题附答案(巩固).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(夺分金卷).docx人教版四年级下学期期末质量监测数学试题附答案(夺分金卷).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(基础题).docx人教版四年级下学期期末质量监测数学试题附答案(基础题).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(培优a卷).docx人教版四年级下学期期末质量监测数学试题附答案(培优a卷).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(名师推荐).docx人教版四年级下学期期末质量监测数学试题附答案(名师推荐).docx
  • 人教版四年级下学期期末质量监测数学试题附答案(b卷).docx人教版四年级下学期期末质量监测数学试题附答案(b卷).docx
  • 人教版四年级下学期期末质量监测数学试题附答案【预热题】.docx人教版四年级下学期期末质量监测数学试题附答案【预热题】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【达标题】.docx人教版四年级下学期期末质量监测数学试题附答案【达标题】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【轻巧夺冠】.docx人教版四年级下学期期末质量监测数学试题附答案【轻巧夺冠】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【综合题】.docx人教版四年级下学期期末质量监测数学试题附答案【综合题】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【综合卷】.docx人教版四年级下学期期末质量监测数学试题附答案【综合卷】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【研优卷】.docx人教版四年级下学期期末质量监测数学试题附答案【研优卷】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【满分必刷】.docx人教版四年级下学期期末质量监测数学试题附答案【满分必刷】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【巩固】.docx人教版四年级下学期期末质量监测数学试题附答案【巩固】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【夺分金卷】.docx人教版四年级下学期期末质量监测数学试题附答案【夺分金卷】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【基础题】.docx人教版四年级下学期期末质量监测数学试题附答案【基础题】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【培优】.docx人教版四年级下学期期末质量监测数学试题附答案【培优】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【培优a卷】.docx人教版四年级下学期期末质量监测数学试题附答案【培优a卷】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【名师推荐】.docx人教版四年级下学期期末质量监测数学试题附答案【名师推荐】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【典型题】.docx人教版四年级下学期期末质量监测数学试题附答案【典型题】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案【b卷】.docx人教版四年级下学期期末质量监测数学试题附答案【b卷】.docx
  • 人教版四年级下学期期末质量监测数学试题附答案ab卷.docx人教版四年级下学期期末质量监测数学试题附答案ab卷.docx
  • 人教版四年级下学期期末质量监测数学试题附答案.docx人教版四年级下学期期末质量监测数学试题附答案.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1