京改版八年级数学上册第十二章三角形必考点解析试题(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 改版 八年 级数 上册 第十二 三角形 必考 解析 试题
- 资源描述:
-
1、京改版八年级数学上册第十二章三角形必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,边长为1的正方形网格图中,点,都在格点上,若,则的长为()ABCD2、若长度分别是a、3、5的三条线段能组
2、成一个三角形,则a的值可以是()A1B2C4D83、 “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形设直角三角形较长直角边长为a,较短直角边长为b若ab=8,大正方形的面积为25,则小正方形的边长为A9B6C4D34、如图,把沿线段折叠,使点落在点处;若,则的度数为()ABCD5、下列图形中,是轴对称图形的是()ABCD6、如图,在中,角平分线交于点,则点到的距离是( )AB2CD37、如图,在中,连接BC,CD,则的度数是()A45B50C55D808、如图,在ABC中,AD是BC边上的高,BA
3、F=CAG=90,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:BG=CF;BGCF;EAF=ABC;EF=EG,其中正确的有()ABCD9、将一副三角尺按如图所示的方式摆放,则的大小为()ABCD10、等腰三角形的一个内角是80,则它的底角是()A50B80C50或80D20或80第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、下列命题中,其逆命题成立的是_(只填写序号)同旁内角互补,两直线平行;如果两个角是直角,那么它们相等;如果两个实数相等,那么它们的平方相等;如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形
4、是直角三角形2、如图,在中,的垂直平分线分别交、于点E、F若是等边三角形,则_3、如图,在ABC中,ACB90,ACBC,BECE,ADCE于D,AD2,BE1则DE_4、如图,将一个长方形纸片沿折叠,使C点与A点重合,若,则线段的长是_5、如图,ABC中,AB=AC,D、E分别在CA、BA的延长线上,连接BD、CE,且D+E=180,若BD=6,则CE的长为_三、解答题(5小题,每小题10分,共计50分)1、在中,为直线上一点,连接,过点作交于点,交于点,在直线上截取,连接(1)当点,都在线段上时,如图,求证:;(2)当点在线段的延长线上,点在线段的延长线上时,如图;当点在线段的延长线上,点
5、在线段的延长线上时,如图,直接写出线段,之间的数量关系,不需要证明2、已知,ABC三条边的长分别为(1)若,当ABC为等腰三角形,求ABC的周长(2)化简:3、如图,已知ABC,ACAB,C45请用尺规作图法,在AC边上求作一点P,使PBC45(保留作图痕迹不写作法)4、细心观察下图,认真分析各式,然后解答问题,;,;,(1)直接写出:_(2)请用含有(是正整数)的等式表示上述变化规律:_=_,_;(3)求出的值5、如图,AD是ABC的角平分线,DE、DF分别是ABD和ACD的高(1)求证:AD垂直平分EF;(2)若AB+AC10,SABC15,求DE的长-参考答案-一、单选题1、B【解析】【
6、分析】利用勾股定理求出AB,再减去BC可得AC的长【详解】解:由图可知:AB=,BC=,AC=AB-BC=,故选B【考点】本题考查了二次根式的加减,勾股定理与网格问题,解题的关键是利用勾股定理求出线段AB的长2、C【解析】【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边,求出a的取值范围即可得解【详解】根据三角形的三边关系得,即,则选项中4符合题意,故选:C【考点】本题主要考查了三角形的三边关系,熟练掌握相关不等关系是解决本题的关键3、D【解析】【分析】由题意可知:中间小正方形的边长为:,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长【详解】解:由题意可知
7、:中间小正方形的边长为:,每一个直角三角形的面积为:,或(舍去),故选:D【考点】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型4、C【解析】【分析】由于折叠,可得三角形全等,运用三角形全等得出,利用平行线的性质可得出则即可求【详解】解:沿线段折叠,使点落在点处, , , , , ,故选:C【考点】本题考查了全等三角形的性质及三角形内角和定理、平行线的性质;解题的关键是,理解折叠就是得到全等的三角形,根据全等三角形的对应角相等就可以解决5、D【解析】【分析】根据“如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形”判断即可得【详解】
8、解:根据题意,A、B、C选项中均不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D【考点】本题主要考查轴对称图形,解题的关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴6、A【解析】【分析】作DEAC于E,作DFBC于F,根据勾股定理可求AC,根据角平分线的性质可得DE=DF,再根据三角形面积公式即可求解【详解】解:作DEAC于E,作DFBC于F,在RtACB中,CD是角平分线,DE=DF
9、,即,解得DE=故点D到AC的距离是故选:A【考点】本题考查了勾股定理,角平分线的性质,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;角平分线的性质:角的平分线上的点到角的两边的距离相等7、B【解析】【分析】连接AC并延长交EF于点M由平行线的性质得,再由等量代换得,先求出即可求出【详解】解:连接AC并延长交EF于点M,故选B【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型8、D【解析】【分析】证得CAFGAB(SAS),从而推得正确;利用CAFGAB及三角形内角和与对顶角,可判断正确;证明AFMBAD(AAS),得出FM=AD,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
新教材2021-2022部编版语文选择性必修上课件:第二单元 第5课 篇目(一) 老子四章 .ppt
