分享
分享赚钱 收藏 举报 版权申诉 / 29

类型人教版九年级数学上册第二十四章圆专项训练试题(含详细解析).docx

  • 上传人:a****
  • 文档编号:869556
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:29
  • 大小:640.97KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二 十四 专项 训练 试题 详细 解析
    资源描述:

    1、人教版九年级数学上册第二十四章圆专项训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知中,点P为边AB的中点,以点C为圆心,长度r为半径画圆,使得点A,P在C内,点B在C外,则半径r的取值范围是()

    2、ABCD2、如图,正方形的边长为4,以点为圆心,为半径画圆弧得到扇形(阴影部分,点在对角线上)若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()AB1CD3、如图,公园内有一个半径为18米的圆形草坪,从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点,为圆心,小强从走到,走便民路比走观赏路少走()米.ABCD4、如图,点B,C,D在O上,若BCD130,则BOD的度数是()A50B60C80D1005、一个点到圆的最大距离为11 cm,最小距离为5 cm,则圆的半径为()A16cm或6 cmB3cm或8 cmC3 cmD8 cm6、下列说法正确的是()近似数精确到十分位;

    3、在,中,最小的是;如图所示,在数轴上点所表示的数为;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点A1B2C3D47、如图,在中,以点为圆心,为半径的圆与相交于点,则的长为()A2BC3D8、如图,已知中,如果以点为圆心的圆与斜边有公共点,那么的半径的取值范围是()ABCD9、如图所示,MN为O的弦,N=52,则MON的度数为()A38B52C76D10410、如图,是的内接三角形,是直径,则的长为( )A4BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、圆锥的底面

    4、半径为3,侧面积为,则这个圆锥的母线长为_2、圆锥形冰淇淋的母线长是12cm,侧面积是60cm2,则底面圆的半径长等于_3、如图,在的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作的外接圆,则的长等于_4、如图,在平面直角坐标系xOy中,点A,B,C的坐标分别是(0,4),(4,0),(8,0),M是ABC的外接圆,则点M的坐标为_5、如图,正方形ABCD的边长为2a,E为BC边的中点, 的圆心分别在边AB、CD上,这两段圆弧在正方形内交于点F,则E、F间的距离为 三、解答题(5小题,每小题10分,共计50分)1、已知:如图,、是的切线,切点分别是、,为上一点,过点作的切线

    5、,交、于、点,已知,求的周长2、已知P为O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若APQ=BPQ(1)如图1,当APQ=45,AP=1,BP=2时,求O的半径。(2)如图2,连接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,设NOP=,OPN=,若AB平行于ON,探究与的数量关系。3、如图,AB是O的直径,弦CDAB于点E,点PO上,1=C(1)求证:CBPD;(2)若ABC=55,求P的度数4、已知抛物线经过点(m,4),交x轴于A,B两点(A在B左边),交y轴于C点对于任意实数n,不等式恒成立(1

    6、)抛物线解析式;(2)在BC上方的抛物线对称轴上是否存在点D,使得BDC2BAC,若有求出点D的坐标,若没有,请说明理由;(3)将抛物线沿x轴正方向平移一个单位,把得到的图象在x轴下方的部分沿x轴向上翻折,图的其余部分保持不变,得到一个新的图象G,若直线y=x+b与新图象G有四个交点,求b的取值范围(直接写出结果即可)5、如图,在RtABC中,C90,BD平分ABC,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E(1)求证:AC是O的切线;(2)若OB2,CD,求图中阴影部分的面积(结果保留)-参考答案-一、单选题1、D【解析】【分析】根据勾股定理,得AB=5,由P为AB的中

    7、点,得CP=,要使点A,P在C内,r3,r4,从而确定r的取值范围.【详解】点A在C内,r3,点B在C外,r4,故选:D.【考点】本题考查了点和圆的位置关系,利用数形结合思想是解题的关键.2、D【解析】【分析】根据题意,扇形ADE中弧DE的长即为圆锥底面圆的周长,即通过计算弧DE的长,再结合圆的周长公式进行计算即可得解【详解】正方形的边长为4是正方形的对角线圆锥底面周长为,解得该圆锥的底面圆的半径是,故选:D【考点】本题主要考查了扇形的弧长公式,圆的周长公式,正方形的性质以及圆锥的相关知识点,熟练掌握弧长公式及圆的周长公式是解决本题的关键3、D【解析】【分析】作OCAB于C,如图,根据垂径定理

    8、得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出A,从而得到OC和AC,可得AB,然后利用弧长公式计算出的长,最后求它们的差即可【详解】解:作OCAB于C,如图,则AC=BC,OA=OB,A=B=(180-AOB)=30,在RtAOC中,OC=OA=9,AC=,AB=2AC=,又=,走便民路比走观赏路少走米,故选D【考点】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题4、D【解析】【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得BAD+BCD=180,即可求得BAD的度数,再根据圆周角的性质,即可求得答案【详

    9、解】圆上取一点A,连接AB,AD,点A、B,C,D在O上,BCD=130,BAD=50,BOD=100.故选D【考点】此题考查了圆周角的性质与圆的内接四边形的性质此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法5、B【解析】【分析】最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解【详解】当点P在圆内时,最近点的距离为5cm,最远点的距离为11cm,则直径是16cm,因而半径是8cm;当点P在圆外时,最近点的距离为5cm,最远点的距离为11cm,则直径是6cm,因而半径是3cm;故选B【考点】本题考查了点与圆的位置关系,利用线段的和差

    10、得出直径是解题关键,分类讨论,以防遗漏6、B【解析】【分析】根据近似数的精确度定义,可判断;根据实数的大小比较,可判断;根据点在数轴上所对应的实数,即可判断;根据反证法的概念,可判断;根据角平分线的性质,可判断【详解】近似数精确到十位,故本小题错误;,最小的是,故本小题正确;在数轴上点所表示的数为,故本小题错误;用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线

    11、的性质,熟练掌握上述知识点,是解题的关键7、C【解析】【分析】过C点作CHAB于H点,在ABC、CBH中由分别求出BC和BH,再由垂径定理求出BD,进而AD=AB-BD即可求解【详解】解:过C点作CHAB于H点,如下图所示:ACB=90,A=30,ABC、CBH均为30、60、90直角三角形,其三边之比为,RtABC中,RtBCH中,由垂径定理可知:,故选:C【考点】本题考查了直角三角形30角所对直角边等于斜边的一半,垂径定理等知识点,熟练掌握垂径定理是解决本题的关键8、C【解析】【分析】作CDAB于D,根据勾股定理计算出AB=13,再利用面积法计算出然后根据直线与圆的位置关系得到当时,以C为

    12、圆心、r为半径作的圆与斜边AB有公共点【详解】解:作CDAB于D,如图,C=90,AC=3,BC=4,以C为圆心、r为半径作的圆与斜边AB有公共点时,r的取值范围为故选:C【考点】本题考查了直线与圆的位置关系:设O的半径为r,圆心O到直线l的距离为d:直线l和O相交dr;直线l和O相切d=r;直线l和O相离dr9、C【解析】【分析】根据半径相等得到OM=ON,则M=N=52,然后根据三角形内角和定理计算MON的度数【详解】OM=ON,M=N=52,MON=180-252=76故选C【考点】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)10、B【解析

    13、】【分析】连接BO,根据圆周角定理可得,再由圆内接三角形的性质可得OB垂直平分AC,再根据正弦的定义求解即可【详解】如图,连接OB,是的内接三角形,OB垂直平分AC,又,,又AD=8,AO=4,解得:,故答案选B【考点】本题主要考查了圆的垂径定理的应用,根据圆周角定理求角度是解题的关键二、填空题1、4【解析】【分析】根据圆锥的底面半径可以求出底面周长即为展开后的弧长,侧面积即为展开后扇形的面积,再根据扇形的面积公式求出扇形的半径即为圆锥的母线【详解】底面半径为3,底面周长=23=6圆锥的母线=故答案为:4【考点】本题考查圆锥与扇形的结合,关键在于理解圆锥周长是扇形弧长,圆锥母线是扇形半径2、5

    14、cm.【解析】【分析】设圆锥的底面圆的半径长为rcm,根据圆锥的侧面积公式计算即可.【详解】解:设圆锥的底面圆的半径长为rcm则2r1260,解得:r5(cm),故答案为5cm【考点】圆锥的侧面积公式是本题的考点,牢记其公式是解题的关键.3、【解析】【分析】由AB、BC、AC长可推导出ACB为等腰直角三角形,连接OC,得出BOC90,计算出OB的长就能利用弧长公式求出的长了【详解】每个小方格都是边长为1的正方形,AB2,AC,BC,AC2BC2AB2,ACB为等腰直角三角形,AB45,连接OC,则COB90,OB的长为:故答案为:【考点】本题考查了弧长的计算以及圆周角定理,解题关键是利用三角形

    15、三边长通过勾股定理逆定理得出ACB为等腰直角三角形4、(6,6)【解析】【分析】如图:由题意可得M在AB、BC的垂直平分线上,则BN=CN;证得ON=OB+BN=6,即OMN是等腰直角三角形,得出MN=ON=6,即可得出答案.【详解】解:如图圆M是ABC的外接圆点M在AB、BC的垂直平分线上,BN=CN,点A,B,C的坐标分别是(0,4),(4,0),(8,0)OA=OB=4,OC=8,BC=4,BN=2,ON=OB+BN=6,AOB=90,AOB是等腰直角三角形,OMAB,MON=45,OMN是等腰直角三角形,MN=ON=6,点M的坐标为(6,6)故答案为(6,6)【考点】本题考查了三角形的

    16、外接圆与外心、坐标与图形性质、等腰直角三角形的判定与性质等知识,其中判定OMN为等腰直角三角形是解答本题的关键5、a【解析】【分析】作DE的中垂线交CD于G,则G为的圆心,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,依据勾股定理可得GE=FG=a,根据四边形EGFH是菱形,四边形BCGH是矩形,即可得到RtOEG中,OE=a,即可得到EF=a【详解】如图,作DE的中垂线交CD于G,则G为的圆心,同理可得,H为的圆心,连接EF,GH,交于点O,连接GF,FH,HE,EG,设GE=GD=x,则CG=2a-x,CE=a,RtCEG中,(2a-x)2+a2=x2,解得x=a,GE

    17、=FG=a,同理可得,EH=FH=a,四边形EGFH是菱形,四边形BCGH是矩形,GO=BC=a,RtOEG中,OE=,EF=a,故答案为a【考点】本题主要考查了正方形的性质以及相交两圆的性质,相交两圆的连心线(经过两个圆心的直线),垂直平分两圆的公共弦注意:在习题中常常通过公共弦在两圆之间建立联系三、解答题1、的周长是【解析】【分析】根据切线长定理得出PAPB,EBEQ,FQFA,代入PEEFPFPEEQFQPF即可求出答案【详解】PA、PB是O的切线,切点分别是A、B,PAPB12cm,过Q点作O的切线,交PA、PB于E、F点,EBEQ,FQFA,PEF的周长是:PEEFPFPEEQFQP

    18、F,PEEBPFFAPBPA121224,答:PEF的周长是24cm【考点】本题主要考查对切线长定理的理解和掌握,能根据切线长定理得出PAPB、EBEQ、FQFA是解此题的关键2、(1);(2)+2=90,见解析【解析】【分析】(1)连接AB,由已知得到APB=APQ+BPQ=90,根据圆周角定理证得AB是O的直径,然后根据勾股定理求得直径,即可求得半径;(2)连接OA、OB、OQ,由证得APQ=BPQ,即可证得OQON,然后根据三角形内角和定理证得2OPN+PON+NOQ=180,即可证得+2=90【详解】(1)连接AB,APQ=BPQ=45,APB=APQ+BPQ=90,AB是O的直径,A

    19、B=,O的半径为;(2)+2=90,证明:连接OA、OB、OQ,APQ=BPQ, ,AOQ=BOQ,OA=OB,OQAB,ONAB,NOOQ,NOQ=90,OP=OQ,OPN=OQP,OPN+OQP+PON+NOQ=180,2OPN+PON+NOQ=180,NOP+2OPN=90,NOP=,OPN=,+2=90【解答】解:【点评】本题考查了圆周角定理,垂径定理,熟练掌握性质定理是解题的关键3、(1)证明见解析;(2)35【解析】【详解】试题分析:(1)要证明CBPD,只要证明1=P;由1=C,P=C,可得1=P,即可解决问题;(2)在RtCEB中,求出C即可解决问题.试题解析:(1)如图,1=

    20、C,P=C,1=P,CBPD;(2)CDAB,CEB=90,CBE=55,C=9055=35,P=C=35.【考点】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知识4、10参考答案:1(1);(2)点D的坐标为(1,1);(3)【解析】【分析】(1)由不等式恒成立可得点(m,4)是抛物线的顶点坐标,求出,将点(t,4)代入求出t的值即可;(2)作线段BC的垂直平分线交对称轴于点D,交BC于E,则点D是ABC的外心,可得BDC2BAC,然后求出直线BC,直线DE的解析式即可解决问题;(3)作出图象G,求出直线y=x+b与图象G有三个交点时b的值,则根据图象可得

    21、直线y=x+b与图象G有四个交点时b的取值范围(1)解:抛物线的对称轴为,不等式恒成立,抛物线的顶点坐标为(m,4),将点(t,4)代入得:,解得:(舍去),抛物线解析式为:;(2)解:令,解得:,A(1,0),B(3,0),由可得C(0,3),对称轴为,作线段BC的垂直平分线交对称轴于点D,交BC于E,E(,),抛物线对称轴是线段AB的垂直平分线,点D是ABC的外心,BDC2BAC,设直线BC的解析式为,代入B(3,0),C(0,3)得,解得:,直线BC的解析式为,设直线DE的解析式为,代入E(,)得,m0,直线DE的解析式为,当时,点D的坐标为(1,1);(3)解:图象G如图所示,由平移可

    22、知图象G过点(0,0),当直线y=x+b过点(0,0)时,b0,将抛物线沿x轴正方向平移一个单位后解析式为,沿x轴向上翻折后解析式为,由,得,整理得:,令,解得:,故若直线y=x+b与新图象G有四个交点,b的取值范围为:【考点】本题考查了待定系数法的应用,二次函数的图象和性质,一次函数的图象和性质,三角形外心的性质,二次函数图象的平移及翻转等知识,熟练掌握数形结合思想的应用是解题的关键5、(1)见解析;(2)【解析】【分析】(1)欲证明AC是O的切线,只要证明ODAC即可(2)证明OBE是等边三角形即可解决问题【详解】(1)证明:连接OD,如图,BD为ABC平分线,12,OBOD,13,23,ODBC,C90,ODA90,ODAC,AC是O的切线(2)过O作OGBC,连接OE,则四边形ODCG为矩形,GCODOB2,OGCD,在RtOBG中,利用勾股定理得:BG1,BE2,则OBE是等边三角形,阴影部分面积为2【考点】本题考查切线的判定和性质,等边三角形的判定和性质,思想的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十四章圆专项训练试题(含详细解析).docx
    链接地址:https://www.ketangku.com/wenku/file-869556.html
    相关资源 更多
  • 人教版二年级数学上册期末模拟试卷带答案(满分必刷).docx人教版二年级数学上册期末模拟试卷带答案(满分必刷).docx
  • 人教版二年级数学上册期末模拟试卷带答案(培优b卷).docx人教版二年级数学上册期末模拟试卷带答案(培优b卷).docx
  • 人教版二年级数学上册期末模拟试卷带答案(a卷).docx人教版二年级数学上册期末模拟试卷带答案(a卷).docx
  • 人教版二年级数学上册期末模拟试卷带答案解析.docx人教版二年级数学上册期末模拟试卷带答案解析.docx
  • 人教版二年级数学上册期末模拟试卷带答案下载.docx人教版二年级数学上册期末模拟试卷带答案下载.docx
  • 人教版二年级数学上册期末模拟试卷带答案.docx人教版二年级数学上册期末模拟试卷带答案.docx
  • 人教版二年级数学上册期末模拟试卷完美版.docx人教版二年级数学上册期末模拟试卷完美版.docx
  • 人教版二年级数学上册期末模拟试卷完整版.docx人教版二年级数学上册期末模拟试卷完整版.docx
  • 人教版二年级数学上册期末模拟试卷完整.docx人教版二年级数学上册期末模拟试卷完整.docx
  • 人教版二年级数学上册期末模拟试卷学生专用.docx人教版二年级数学上册期末模拟试卷学生专用.docx
  • 人教版二年级数学上册期末模拟试卷含解析答案.docx人教版二年级数学上册期末模拟试卷含解析答案.docx
  • 人教版二年级数学上册期末模拟试卷含精品答案.docx人教版二年级数学上册期末模拟试卷含精品答案.docx
  • 人教版二年级数学上册期末模拟试卷含答案(黄金题型).docx人教版二年级数学上册期末模拟试卷含答案(黄金题型).docx
  • 人教版二年级数学上册期末模拟试卷含答案(预热题).docx人教版二年级数学上册期末模拟试卷含答案(预热题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(达标题).docx人教版二年级数学上册期末模拟试卷含答案(达标题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(轻巧夺冠).docx人教版二年级数学上册期末模拟试卷含答案(轻巧夺冠).docx
  • 人教版二年级数学上册期末模拟试卷含答案(能力提升).docx人教版二年级数学上册期末模拟试卷含答案(能力提升).docx
  • 人教版二年级数学上册期末模拟试卷含答案(综合题).docx人教版二年级数学上册期末模拟试卷含答案(综合题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(综合卷).docx人教版二年级数学上册期末模拟试卷含答案(综合卷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(精练).docx人教版二年级数学上册期末模拟试卷含答案(精练).docx
  • 人教版二年级数学上册期末模拟试卷含答案(突破训练).docx人教版二年级数学上册期末模拟试卷含答案(突破训练).docx
  • 人教版二年级数学上册期末模拟试卷含答案(研优卷).docx人教版二年级数学上册期末模拟试卷含答案(研优卷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(满分必刷).docx人教版二年级数学上册期末模拟试卷含答案(满分必刷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(模拟题).docx人教版二年级数学上册期末模拟试卷含答案(模拟题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(最新).docx人教版二年级数学上册期末模拟试卷含答案(最新).docx
  • 人教版二年级数学上册期末模拟试卷含答案(新).docx人教版二年级数学上册期末模拟试卷含答案(新).docx
  • 人教版二年级数学上册期末模拟试卷含答案(巩固).docx人教版二年级数学上册期末模拟试卷含答案(巩固).docx
  • 人教版二年级数学上册期末模拟试卷含答案(完整版).docx人教版二年级数学上册期末模拟试卷含答案(完整版).docx
  • 人教版二年级数学上册期末模拟试卷含答案(夺分金卷).docx人教版二年级数学上册期末模拟试卷含答案(夺分金卷).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1