分享
分享赚钱 收藏 举报 版权申诉 / 29

类型人教版九年级数学上册第二十四章圆专题练习试题(含详细解析).docx

  • 上传人:a****
  • 文档编号:869559
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:29
  • 大小:638.26KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二 十四 专题 练习 试题 详细 解析
    资源描述:

    1、人教版九年级数学上册第二十四章圆专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知是的两条切线,A,B为切点,线段交于点M给出下列四种说法:;四边形有外接圆;M是外接圆的圆心,其中正确说法

    2、的个数是()A1B2C3D42、如图1,一个扇形纸片的圆心角为90,半径为6如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A6B69C12D3、如图,AB是半圆的直径,点D是弧AC的中点,ABC50,则BCD()A105B110C115D1204、如图,四边形ABCD内接于O,点I是ABC的内心,AIC=124,点E在AD的延长线上,则CDE的度数为()A56B62C68D785、如图,在中,AB=AC=5,点在上,且,点E是AB上的动点,连结,点,G分别是BC,DE的中点,连接,当AG=FG时,线段长为()ABCD46、在平面直角坐标

    3、系中,O的半径为2,点A(1,)与O的位置关系是()A在O上B在O内C在O外D不能确定7、如图,矩形中,分别是,边上的动点,以为直径的与交于点,则的最大值为()A48B45C42D408、已知点在半径为8的外,则()ABCD9、如图所示,MN为O的弦,N=52,则MON的度数为()A38B52C76D10410、如图所示,矩形纸片中,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则的长为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在甲,以点为圆心,的长为半径作圆,交于点,交于点,阴影部分的面积为_(结

    4、果保留)2、如图,ABC是O的内接三角形,AB是O的直径,I是ABC的内心,则BIA的度数是_3、如图,在RtABC中,ACB=90,AC=6,BC=8,点D是AB的中点,以CD为直径作O,O分别与AC,BC交于点E,F,过点F作O的切线FG,交AB于点G,则FG的长为_4、如图,在中,ABC=90,A=58,AC=18,点D为边AC的中点以点B为圆心,BD为半径画圆弧,交边BC于点E,则图中阴影部分图形的面积为_a5、如图,在O中,则图中阴影部分的面积是_(结果保留)三、解答题(5小题,每小题10分,共计50分)1、如图,已知点在上,点在外,求作一个圆,使它经过点,并且与相切于点(要求写出作

    5、法,不要求证明)2、正方形ABCD的四个顶点都在O上,E是O上的一点(1)如图,若点E在上,F是DE上的一点,DF=BE求证:ADFABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=AE请说明理由;(3)如图,若点E在上连接DE,CE,已知BC=5,BE=1,求DE及CE的长3、已知:求作:,使它经过点和点,并且圆心在的平分线上,4、如图,为的直径,射线交于点F,点C为劣弧的中点,过点C作,垂足为E,连接(1)求证:是的切线;(2)若,求阴影部分的面积5、在平面直角坐标系中,对于点,给出如下定义:当点满足时,称点Q是点P的等和点已知点(1)在,中,点P

    6、的等和点有_;(2)点A在直线上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点和线段MN,对于所有满足的点C,线段MN上总存在线段PC上每个点的等和点若MN的最小值为5,直接写出b的取值范围-参考答案-一、单选题1、C【解析】【分析】由切线长定理判断,结合等腰三角形的性质判断,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,判断,利用反证法判断【详解】如图, 是的两条切线, 故正确, 故正确, 是的两条切线, 取的中点,连接,则 所以:以为圆心,为半径作圆,则共圆,故正确, M是外接圆的圆心, 与题干提供的条件不符,故错误,综上:正确的说法是个,故选C【考点】本题考查的是

    7、切线长定理,三角形的外接圆,四边形的外接圆,掌握以上知识是解题的关键2、A【解析】【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=6,CD=3,从而得到CDO=30,COD=60,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD-SCOD,进行计算即可【详解】解:连接OD,如图,扇形纸片折叠,使点A与点O恰好重合,折痕为CD,ACOC,OD2OC6,CD,CDO30,COD60,由弧AD、线段AC和CD所围成的图形的面积S扇形AODSCOD6,阴影部分的面积为6.故选A【考点】本题

    8、考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积记住扇形面积的计算公式也考查了折叠性质3、C【解析】【分析】连接AC,然后根据圆内接四边形的性质,可以得到ADC的度数,再根据点D是弧AC的中点,可以得到DCA的度数,直径所对的圆周角是90,从而可以求得BCD的度数【详解】解:连接AC,ABC50,四边形ABCD是圆内接四边形,ADC130,点D是弧AC的中点,CDAC,DCADAC25,AB是直径,BCA90,BCDBCA+DCA115,故选:C【考点】本题考查圆周角定理、圆心角、弧、弦的关系,解答本题的关键是明确题意,利用数形结合的思想解答4、C【解析】【分析】

    9、由点I是ABC的内心知BAC=2IAC、ACB=2ICA,从而求得B=180(BAC+ACB)=1802(180AIC),再利用圆内接四边形的外角等于内对角可得答案【详解】解:点I是ABC的内心,BAC=2IAC、ACB=2ICA,AIC=124,B=180(BAC+ACB)=1802(IAC+ICA)=1802(180AIC)=68,又四边形ABCD内接于O,CDE=B=68,故选:C【考点】本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质5、A【解析】【分析】连接DF,EF,过点F作FNAC,FMAB,结合直角三角形斜边中线等于斜边的一半求得点A,D

    10、,F,E四点共圆,DFE=90,然后根据勾股定理及正方形的判定和性质求得AE的长度,从而求解【详解】解:连接DF,EF,过点F作FNAC,FMAB在中,点G是DE的中点,AG=DG=EG又AG=FG点A,D,F,E四点共圆,且DE是圆的直径DFE=90在RtABC中,AB=AC=5,点是BC的中点,CF=BF=,FN=FM=又FNAC,FMAB,四边形NAMF是正方形AN=AM=FN=又,NFDMFEME=DN=AN-AD=AE=AM+ME=3在RtDAE中,DE=故选:A【考点】本题考查直径所对的圆周角是90,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算

    11、是解题关键6、A【解析】【分析】根据点A的坐标,求出OA=2,根据点与圆的位置关系即可做出判断【详解】解:点A的坐标为(1,),由勾股定理可得:OA=,又O的半径为2,点A在O上故选:A【考点】本题考查了点和圆的位置关系,点和圆的位置关系是由点到圆心的距离和圆的半径间的大小关系确定的:(1)当时,点在圆外;(2)当时,点在圆上;(3)当时,点在圆内7、A【解析】【分析】过A点作AHBD于H,连接OM,如图,先利用勾股定理计算出BD=75,则利用面积法可计算出AH=36,再证明点O在AH上时,OH最短,此时HM有最大值,最大值为24,然后根据垂径定理可判断MN的最大值【详解】解:过A点作AHBD

    12、于H,连接OM,如图,在RtABD中,BD=,AHBD=ADAB,AH=36,O的半径为26,点O在AH上时,OH最短,HM=,此时HM有最大值,最大值为:24,OHMN,MN=2MH,MN的最大值为224=48故选:A【考点】本题考查了垂径定理:直于弦的直径平分这条弦,并且平分弦所对的两条弧也考查了矩形的性质和勾股定理8、A【解析】【分析】根据点P与O的位置关系即可确定OP的范围【详解】解:点P在圆O的外部,点P到圆心O的距离大于8,故选:A【考点】本题主要考查点与圆的位置关系,关键是要牢记判断点与圆的位置关系的方法9、C【解析】【分析】根据半径相等得到OM=ON,则M=N=52,然后根据三

    13、角形内角和定理计算MON的度数【详解】OM=ON,M=N=52,MON=180-252=76故选C【考点】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)10、B【解析】【分析】设AB=xcm,则DE=(6-x)cm,根据扇形的弧长等于圆锥底面圆的周长列出方程,求解即可【详解】设,则DE=(6-x)cm,由题意,得,解得. 故选B【考点】本题考查了圆锥的计算,矩形的性质,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长二、填空题1、【解析】【分析】连接BE,根据正切的定义求出A

    14、,根据扇形面积公式、三角形的面积公式计算即可【详解】解:连接BE, 在RtABC中,ABC90,tanA,A60,BABE,ABE为等边三角形,ABE30,EBC30,阴影部分的面积22故答案为【考点】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式是解题的关键2、135【解析】【分析】先根据直径所对的圆周角是直角得出,进而求出,再根据内心是三角形内角平分线的交点得出,最后利用三角形的内角和定理即得【详解】AB是O的直径I是ABC的内心IA、IB是角平分线 故答案为:135【考点】本题考查圆周角定理、内心、角平分线的定义及三角形内角和定理,解题关键是熟知:直径所对的圆周角为直

    15、角;三角形的内心是内角平分线的交点3、【解析】【分析】先利用勾股定理求出AB=10,进而求出CD=BD=5,再求出CF=4,进而求出DF=3,再判断出FGBD,利用面积即可得出结论【详解】如图,在RtABC中,根据勾股定理得,AB=10,点D是AB中点,CD=BD=AB=5,连接DF,CD是O的直径,CFD=90,BF=CF=BC=4,DF=3,连接OF,OC=OD,CF=BF,OFAB,OFC=B,FG是O的切线,OFG=90,OFC+BFG=90,BFG+B=90,FGAB,SBDF=DFBF=BDFG,FG=,故答案为.【考点】此题主要考查了直角三角形的性质,勾股定理,切线的性质,三角形

    16、的中位线定理,三角形的面积公式,判断出FGAB是解本题的关键4、【解析】【分析】先根据直角三角形斜边上的中线性质得到BD=CD=9,则DBC=C=22,然后根据扇形的面积公式计算【详解】解:ABC=90,点D为边AC的中点,BD=CD=AC=9,DBC=C,C=90-A=90-58=32,DBE=32,图中阴影部分图形的面积= 故答案为:【考点】本题考查了扇形面积的计算:设圆心角是n,圆的半径为R的扇形面积为S,则S扇形= 或S扇形=lR(其中l为扇形的弧长)也考查了直角三角形斜边上的中线性质5、【解析】【分析】由,根据圆周角定理得出,根据S阴影=S扇形AOB可得出结论【详解】解:,S阴影=S

    17、扇形AOB,故答案为:【考点】本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键三、解答题1、见解析【解析】【分析】先确定圆心,再确定圆的半径,画圆即可【详解】解:如图,连接、,作线段的垂直平分线交的延长线于一点,交点即为,以为圆心,或的长度为半径作圆,即为所求【考点】本题考查了确定圆的条件和相切两圆的性质,作图是难点,注:确定圆,即确定圆心和半径2、(1)证明见解析;(2)理由见解析;(3)DE=7,CE=【解析】【分析】(1)根据正方形的性质,得AB=AD;根据圆周角的性质,得,结合DF=BE,即可完成证明;(2)由(1)结论得AF=AE,;结合BAD=

    18、90,得EAF=90,从而得到EAF是等腰直角三角形,即EF=AE;最后结合DE-DF=EF,从而得到答案;(3)连接BD,将CBE绕点C顺时针旋转90至CDH;结合题意,得CBE+CDE=180,从而得到E,D,H三点共线;根据BC=CD,得,从而推导得BEC=DEC=45,即CEH是等腰直角三角形;再根据勾股定理的性质计算,即可得到答案【详解】(1)如图,在正方形ABCD中,AB=AD在ADF和ABE中ADFABE(SAS);(2)由(1)结论得:ADFABEAF=AE,3=4正方形ABCD中,BAD=90BAF+3=90BAF+4=90EAF=90EAF是等腰直角三角形EF2=AE2+A

    19、F2EF2=2AE2EF=AE即DE-DF=AEDE-BE=AE;(3)连接BD,将CBE绕点C顺时针旋转90至CDH四边形BCDE内接于圆CBE+CDE=180E,D,H三点共线在正方形ABCD中,BAD=90BED=BAD=90BC=CDBEC=DEC=45CEH是等腰直角三角形在RtBCD中,由勾股定理得BD=BC=5在RtBDE中,由勾股定理得:DE=在RtCEH中,由勾股定理得:EH2=CE2+CH2(ED+DH)2=2CE2,即(ED+BE)2=2CE264=2CE2CE=4【考点】本题考查了正方形、圆、等腰三角形、勾股定理、全等三角形、旋转的知识;解题的关键是熟练掌握正方形、圆周

    20、角、正多边形与圆、等腰三角形、勾股定理、全等三角形、旋转的性质,从而完成求解3、见详解【解析】【分析】要作圆,即需要先确定其圆心,先作A的角平分线,再作线段BC的垂直平分线相交于点O,即O点为圆心【详解】解:根据题意可知,先作A的角平分线,再作线段BC的垂直平分线相交于O,即以O点为圆心,OB为半径,作圆O,如下图所示:【考点】此题主要考查了学生对确定圆心的作法,要求学生熟练掌握应用4、(1)证明见解析;(2)【解析】【分析】(1)连接BF,证明BF/CE,连接OC,证明OCCE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积【详解】(1)连接,是的直径,即,连接,点C

    21、为劣弧的中点,OC是的半径,CE是的切线;(2)连接,点C为劣弧的中点, S扇形FOC=,即阴影部分的面积为:【考点】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键5、 (1),;(2);(3)【解析】【分析】(1)根据新定义计算即可;(2)由(1)可知,P的等和点纵坐标比横坐标大2,根据等和点的定义,A的横坐标比纵坐标大2,由此可得方程,求解即可;(3)因为线段MN上总存在线段PC上每个点的等和点且MN的最小值为5,所以PC的最大距离不能超过5,分别找到点P和点C的等和点所在的区域或直线,然后得到MN取得最大值时,b的边界即可(1)解:由

    22、题意可知:,点Q1是点P的等和点;,点Q2不是点P的等和点;,点Q3是点P的等和点;点P的等和点有,(2)解:设,由(1)可知,P的等和点纵坐标比横坐标大2,点P的等和点也是点A的等和点,A的横坐标比纵坐标大2,则,解之得:,故,(3)解:P(2,0),P点的等和点在直线y=x+2上,B(b,0),B点的等和点在直线y=x+b上,设直线y=x+b与y轴的交点为B(0,b),BC=1,C点在以B为圆心,半径为1的圆上,点C的等和点是两条直线及其之间与其平行的所有平行线上,以B为圆心,1为半径作圆,过点B作y=x+2的垂线交圆与N点,交直线于M点,MN的最小值为5,BM最小值为4,在RtBMP中,BP=,PB=,OB=,同理当B点在y轴左侧时OB=,b【考点】本题考查新定义,涉及到平面直角坐标系,坐标轴上两点之间的距离,一次函数,解题的关键是理解题意,根据题意进行求解,(3)较难,需理解题意将其转化为求PC最大值问题

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十四章圆专题练习试题(含详细解析).docx
    链接地址:https://www.ketangku.com/wenku/file-869559.html
    相关资源 更多
  • 人教版六年级上册数学期末测试卷及参考答案(能力提升).docx人教版六年级上册数学期末测试卷及参考答案(能力提升).docx
  • 人教版六年级上册数学期末测试卷及参考答案(考试直接用).docx人教版六年级上册数学期末测试卷及参考答案(考试直接用).docx
  • 人教版六年级上册数学期末测试卷及参考答案(综合题).docx人教版六年级上册数学期末测试卷及参考答案(综合题).docx
  • 人教版六年级上册数学期末测试卷及参考答案(综合卷).docx人教版六年级上册数学期末测试卷及参考答案(综合卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(精练).docx人教版六年级上册数学期末测试卷及参考答案(精练).docx
  • 人教版六年级上册数学期末测试卷及参考答案(突破训练).docx人教版六年级上册数学期末测试卷及参考答案(突破训练).docx
  • 人教版六年级上册数学期末测试卷及参考答案(研优卷).docx人教版六年级上册数学期末测试卷及参考答案(研优卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(满分必刷).docx人教版六年级上册数学期末测试卷及参考答案(满分必刷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(最新).docx人教版六年级上册数学期末测试卷及参考答案(最新).docx
  • 人教版六年级上册数学期末测试卷及参考答案(新).docx人教版六年级上册数学期末测试卷及参考答案(新).docx
  • 人教版六年级上册数学期末测试卷及参考答案(巩固).docx人教版六年级上册数学期末测试卷及参考答案(巩固).docx
  • 人教版六年级上册数学期末测试卷及参考答案(完整版).docx人教版六年级上册数学期末测试卷及参考答案(完整版).docx
  • 人教版六年级上册数学期末测试卷及参考答案(基础题).docx人教版六年级上册数学期末测试卷及参考答案(基础题).docx
  • 人教版六年级上册数学期末测试卷及参考答案(培优b卷).docx人教版六年级上册数学期末测试卷及参考答案(培优b卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(培优a卷).docx人教版六年级上册数学期末测试卷及参考答案(培优a卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(名师推荐).docx人教版六年级上册数学期末测试卷及参考答案(名师推荐).docx
  • 人教版六年级上册数学期末测试卷及参考答案(典型题).docx人教版六年级上册数学期末测试卷及参考答案(典型题).docx
  • 人教版六年级上册数学期末测试卷及参考答案(b卷).docx人教版六年级上册数学期末测试卷及参考答案(b卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(a卷).docx人教版六年级上册数学期末测试卷及参考答案(a卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案一套.docx人教版六年级上册数学期末测试卷及参考答案一套.docx
  • 人教版六年级上册数学期末测试卷及参考答案【预热题】.docx人教版六年级上册数学期末测试卷及参考答案【预热题】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【达标题】.docx人教版六年级上册数学期末测试卷及参考答案【达标题】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【能力提升】.docx人教版六年级上册数学期末测试卷及参考答案【能力提升】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【考试直接用】.docx人教版六年级上册数学期末测试卷及参考答案【考试直接用】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【综合题】.docx人教版六年级上册数学期末测试卷及参考答案【综合题】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【综合卷】.docx人教版六年级上册数学期末测试卷及参考答案【综合卷】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【精练】.docx人教版六年级上册数学期末测试卷及参考答案【精练】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【突破训练】.docx人教版六年级上册数学期末测试卷及参考答案【突破训练】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【研优卷】.docx人教版六年级上册数学期末测试卷及参考答案【研优卷】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1