基础强化人教版九年级数学上册第二十二章二次函数专项攻克试卷(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基础 强化 人教版 九年级 数学 上册 第二十二 二次 函数 专项 攻克 试卷 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十二章二次函数专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若平面直角坐标系内的点 M 满足横、纵坐标都为整数,则把点 M 叫做“整点”例如:P(1,0)、Q(2,2)都
2、是“整点”抛物线 y=mx22mx+m1(m0)与 x 轴交于 A、 B 两点,若该抛物线在 A、B 之间的部分与线段 AB 所围成的区域(包括边界)恰有 6 个整点,则 m 的取值范围是()A m B m C m D m 2、如果y=(m-2)x是关于x的二次函数,则m=()A-1B2C-1或2Dm不存在3、在“探索函数的系数,与图象的关系”活动中,老师给出了直角坐标系中的四个点:,同学们探索了经过这四个点中的三个点的二次函数的图象,发现这些图象对应的函数表达式各不相同,其中的值最大为()ABCD4、把抛物线向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是()ABCD5、
3、已知抛物线yax2bxc(ay2By1y2Cy1y2D不能确定6、二次函数yax2bxc的图象过点(1,0),对称轴为直线x2,若a0,则下列结论错误的是()A当x2时,y随着x的增大而增大B(ac)2b2C若A(x1,m)、B(x2,m)是抛物线上的两点,当xx1x2时,ycD若方程a(x1)(5x)1的两根为x1、x2,且x1x2,则1x15x27、如图,在平面直角坐标系中,二次函数yx22xc的图象与x轴交于A、C两点,与y轴交于点B(0,3),若P是x轴上一动点,点D(0,1)在y轴上,连接PD,则PDPC的最小值是()A4B22C2D8、把抛物线的图象向左平移1个单位,再向上平移2个
4、单位,所得的抛物线的函数关系式是()ABCD9、已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是()A或2BC2D10、如图,正方形边长为4,、分别是、上的点,且设、两点间的距离为,四边形的面积为,则与的函数图象可能是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、请写出一个开口向下,并且与轴交于点的抛物线的解析式_2、对于任意实数,抛物线与轴都有公共点则的取值范围是_3、在函数中,当x1时,y随x的增大而 _(填“增大”或“减小”)4、若二次函数yx2+mx在1x2时的最大值为
5、3,那么m的值是_5、若正方体的棱长为,表面积为,则与的关系式为_三、解答题(5小题,每小题10分,共计50分)1、若二次函数图像经过,两点,求、的值.2、去年“抗疫”期间,某生产消毒液厂家响应政府号召,将成本价为6元/件的简装消毒液低价销售为此当地政府决定给予其销售的这种消毒液按a元/件进行补贴,设某月销售价为x元/件,a与x之间满足关系式:,下表是某4个月的销售记录每月销售量(万件)与该月销售价x(元/件)之间成一次函数关系月份二月三月四月五月销售价x(元件)677.68.5该月销售量y(万件)3020145(1)求y与x的函数关系式;(2)当销售价为8元/件时,政府该月应付给厂家补贴多少
6、万元?(3)当销售价x定为多少时,该月纯收入最大?(纯收入=销售总金额-成本+政府当月补贴)3、综合与探究如图1,在平面直角坐标系xOy中,抛物线W的函数表达式为y=x2+x+4抛物线W与x轴交于A,B两点(点B在点A的右侧,与y轴交于点C,它的对称轴与x轴交于点D,直线l经过C、D两点(1)求A、B两点的坐标及直线l的函数表达式(2)将抛物线W沿x轴向右平移得到抛物线W,设抛物线W的对称轴与直线l交于点F,当ACF为直角三角形时,求点F的坐标,并直接写出此时抛物线W的函数表达式(3)如图2,连接AC,CB,将ACD沿x轴向右平移m个单位(0m5),得到ACD设AC交直线l于点M,CD交CB于
7、点N,连接CC,MN求四边形CMNC的面积(用含m的代数式表示)4、如图,在平面直角坐标系中,抛物线交轴于,两点,交轴于点,且,点是第三象限内抛物线上的一动点(1)求此抛物线的表达式;(2)若,求点的坐标;(3)连接,求面积的最大值及此时点的坐标5、小明和小丽先后从A地出发同一直道去B地, 设小丽出发第时, 小丽、小明离B地的距离分别为、,与x之间的数表达式,与x之间的函数表达式是(1)小丽出发时,小明离A地的距离为 (2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?-参考答案-一、单选题1、B【解析】【分析】先将抛物线化为顶点式写出顶点坐标,然后根据顶点坐标以及恰有6个
8、整点确定A点范围,最后根据A点坐标代入求出m的取值范围.【详解】解:,抛物线顶点坐标为(1,1),如图所示,该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有6个整点,点A在(1,0)与(2,0)之间,包括点(1,0),当抛物线绕过(1,0)时,当抛物线绕过(2,0)时,m的取值范围为,故选B【考点】本题为二次函数关系式与图象的综合运用,要熟悉表达式之间的转化,以及熟练掌握二次函数的图象.2、A【解析】【分析】根据二次函数的定义知m2-m=2,且m-2,解出即可.【详解】依题意,解得m=-1,故选:A.【考点】此题主要考查二次函数的定义,需要注意二次项系数不为零.3、A【解析】【
9、分析】分四种情况讨论,利用待定系数法,求过,中的三个点的二次函数解析式,继而解题【详解】解:设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;设过三个点,的抛物线解析式为:分别代入,得解得;最大为,故选:A【考点】本题考查待定系数法求二次函数的解析式,是基础考点,难度较易,掌握相关知识是解题关键4、D【解析】【分析】直接根据“左加右减,上加下减”的原则进行解答即可【详解】由“左加右减”的原则可知,抛物线y=2x2向右平移2个单位所得抛物线是y=2(x2)2;由“上加下减”的原则可知,抛物线y=2(x2
10、)2向下平移1个单位所得抛物线是y=2(x2)21.故选D.【考点】本题考查了二次函数图象与几何变换,解题的关键是掌握二次函数图象与几何变换.5、A【解析】【分析】根据二次函数图象的对称轴位置以及开口方向,可得C(5,y1)距对称轴的距离比D(5,y2)距对称轴的距离小,进而即可得到答案【详解】抛物线yax2bxc(ay2,故选A【考点】本题主要考查二次函数的性质,掌握用抛物线的轴对称性比较二次函数值的大小,是解题的关键6、D【解析】【分析】根据二次函数的性质即可判断A;根据对称轴得到b4a,经过点(1,0)得到c5a,从而求得a+c4a,即可判断B;由抛物线的对称性得到,结合xx1+x2,即
11、可判断C;利用二次函数与一元二次方程的关系即可判断D【详解】解:二次函数yax2+bx+c中,a0,对称轴为直线x2,当x2时,y随着x的增大而增大,故A正确;2,b4a,二次函数yax2+bx+c的图象过点(1,0),ab+c0,即a+4a+c0,c5a,a+c4a,(a+c)2b2,故B正确;A(x1,m)、B(x2,m)是抛物线上的两点,抛物线对称轴,2xx1+x2,xx1+x2,2xx,x0,此时,yax2+bx+cc,故C正确;抛物线的对称轴为直线x2,图象与x轴交于(1,0),抛物线x轴的另一个交点是(5,0),抛物线与直线y1的交点横坐标x11,x25,如图,方程a(x+1)(x
12、5)1的两根为x1和x2,且x1x2,则1x1x25,故D错误故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,抛物线与x轴的交点,熟练掌握二次函数的性质是解题的关键7、A【解析】【分析】过点P作PJBC于J,过点D作DHBC于H根据,求出的最小值即可解决问题【详解】解:过点P作PJBC于J,过点D作DHBC于H二次函数yx22x+c的图象与y轴交于点B(0,3),c3,二次函数的解析式为yx22x3,令y0,x22x30,解得x1或3,A(1,0),B(0,-3),OBOC3,BOC90,OBCOCB45,D(0,1),OD1,BD4,DHBC,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2020届高三化学下学期四月联考卷(B)(PDF).pdf
