基础强化北师大版八年级数学上册第一章勾股定理综合测试练习题(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基础 强化 北师大 八年 级数 上册 第一章 勾股定理 综合测试 练习题 答案 详解
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三
2、角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是()A1B2021C2020D20192、如图,点,在直线的同侧,到的距离,到的距离,已知,是直线上的一个动点,记的最小值为,的最大值为,则的值为()A160B150C140D1303、九章算术“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈10尺,1尺10寸)?若设门的宽为x寸,则下列方程中,符合题意的是()Ax2+12(x+0
3、.68)2Bx2+(x+0.68)212Cx2+1002(x+68)2Dx2+(x+68)210024、在中,的对边分别是a,b,c,若,则的面积是()ABCD5、如图所示的网格是正方形网格,A,B,C,D是网格线交点,则与的大小关系为()ABCD无法确定6、如图,在中,cm,cm,点、分别在、边上现将沿翻折,使点落在点处连接,则长度的最小值为()A0B2C4D67、如图,一棵大树在一次强台风中距地面5m处折断,倒下后树顶端着地点A距树底端B的距离为12m,这棵大树在折断前的高度为()A10mB15mC18mD20m8、如图,在ABC中,BAC=90,BC=5,以AB,AC为边作正方形,这两个
4、正方形的面积和为()A5B9C16D259、有一个直角三角形的两边长分别为3和4,则第三边的长为()A5BCD5或10、如图,嘉嘉在A时测得一棵4米高的树的影长为,若A时和B时两次日照的光线互相垂直,则B时的影长为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、图,在菱形ABCD中,是锐角,于点E,M是AB的中点,连接MD,若,则的值为_2、如图,一架长5米的梯子A1B1斜靠在墙A1C上,B1到墙底端C的距离为3米,此时梯子的高度达不到工作要求,因此把梯子的B1端向墙的方向移动了1.6米到B处,此时梯子的高度达到工作要求,那么梯子的A1端向上移动了_米3、如
5、图,一艘轮船位于灯塔P的南偏东方向,距离灯塔50海里的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东方向上的B处,此时B处与灯塔P的距离为_海里(结果保留根号)4、把两个同样大小含角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点,且另外三个锐角顶点在同一直线上若,则_5、如图,折叠直角三角形纸片ABC,使得两个锐角顶点A、C重合,设折痕为DE,若AB=4,BC=3,则ADC的周长是_三、解答题(5小题,每小题10分,共计50分)1、若的三边,满足条件,试判断的形状.2、已如:如图,四边形中,求四边形的面积3、如图,某商家想在商场大楼上悬挂一块广
6、告牌,广告牌高根据商场规定广告牌最高点不得高于地面20m,经测量,测角仪支架高,在F处测得广告牌底部点B的仰角为30,在E处测得标语牌顶部点A的仰角为45,请计算说明,商家这样放广告牌是否符合规定?(图中点A,B,C,D,E,F,G,H在同一平面内)4、如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即,求这棵树在离地面多高处被折断(即求AC的长度)?5、如图,已知和中,点C在线段BE上,连接DC交AE于点O(1)DC与BE有怎样的位置关系?证明你的结论;(2)若,求DE的长-参考答案-一、单选题1、B【解析】【分析】根据勾股定理求出“生长”了1次后形成
7、的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可【详解】解:由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,“生长”了3次后形成的图形中所有的正方形的面积和为4,“生长”了2020次后形成的图形中所有的正方形的面积和为2021,故选:B【考点】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c22、A【解析】【分析】作点A关于直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作
8、直线,在根据勾股定理求出线段的长,即为PA+PB的最小值,延长AB交MN于点,此时,由三角形三边关系可知,故当点P运动到时最大,过点B作由勾股定理求出AB的长就是的最大值,代入计算即可得【详解】解:如图所示,作点A关于直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线,在中,根据勾股定理得,即PA+PB的最小值是;如图所示,延长AB交MN于点,当点P运动到点时,最大,过点B作,则, ,在中,根据勾股定理得,即,故选A【考点】本题考查了最短线路问题和勾股定理,解题的关键是熟知两点之间线段最短及三角形的三边关系3、D【解析】【分析】1丈100寸,6尺8寸68寸,设门的宽为x寸,则
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
