分享
分享赚钱 收藏 举报 版权申诉 / 7

类型2021-2022高中数学人教A版选修2-1教案:2-1-1曲线与方程 (系列二) WORD版含解析.doc

  • 上传人:a****
  • 文档编号:461190
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:7
  • 大小:1.09MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021-2022高中数学人教A版选修2-1教案:2-1-1曲线与方程 系列二 WORD版含解析 2021 2022 高中 学人 选修 教案 曲线 方程 系列 WORD 解析
    资源描述:

    1、211曲线与方程【学情分析】:学生在必修模块中已经学过直线与圆的方程,熟练掌握了直线的方程、圆的方程的常用形式,能解决直线与圆的有关问题,对解析几何的研究方法与思路有一定的了解,这些对本节学习有很大帮助。【教学目标】:知识与技能1、 了解曲线上的点与方程的解之间的一一对应关系,2、 领会“曲线的方程”与“方程的曲线”的概念及其关系,并能作简单的判断与推理;过程与方法1. 在形成概念的过程中,培养分析、抽象和概括等思维能力,掌握形数结合、函数与方程、化归与转化等数学思想,以及坐标法、待定系数法等常用的数学方法;2. 体会研究解析几何的基本思想和解决解析几何问题的方法.情感态度与价值观 培养学生实

    2、事求是、合情推理、合作交流及独立思考等良好的个性品质,以及主动参与、勇于探索、敢于创新的精神【教学重点】:理解曲线与方程的有关概念与相互联系【教学难点】:定义中规定两个关系(纯粹性和完备性) 【课前准备】:多媒体、实物投影仪 【教学过程设计】:教学环节教学活动设计意图一复习、引入1、问题: (1)求如图所示的直线的方程,并说明曲线上的点与方程之间的关系;观察、思考,求得方程为引导学生分析:(1)如果点是这条直线上的任意一点,则它到两坐标轴的距离相等,即,那么它的坐标是方程的解。(2)如果是方程的解,即,则以这个解为坐标的点到两坐标轴的距离相等,它一定在这条直线上。通过学生已熟悉的两种曲线引入,

    3、有利于学生在已有知识基础上开展学习;提出新问题,创设情景,引发学习兴趣。二复习、引入 (2) 仿照(1)说明:以为圆心,以r为半径的圆与方程的关系 设M(xo,yo)是圆上任一点,则它到圆心的距离等于 半径 ,即,即:,这就是说,(xo,yo)是此方程的 解 ; 如果(xo,yo)是方程的解,则可以推得 ,即点M(xo,yo)到圆心的距离等于半径 ,点M在 圆 上。 引导学生在前一个例子的基础上类比归纳,得出结论,使他们理解几何中的“形”与代数中的“数”的统一,为“依形判数”和“就数论形”的相互转化奠定了扎实的基础这正体现了解析几何的基本思想,对解析几何教学有着深远的影响 三讲解定义 1在直角

    4、坐标系中,如果某曲线C上的点与一个二元方程的实数解建立了如下关系:(1)曲线上的点的坐标都是这个方程的解;(纯粹性)(2)以这个方程的解为坐标的点都是曲线上的点(完备性)那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线2.讨论:曲线可以看作是由点组成的集合,记作C;一个关于x,y的二元方程的解可以作为点的坐标,因而二元方程的解也描述了一个点集,记作F 请大家思考:如何用集合C和点集F间的关系来表达“曲线的方程”和“方程的曲线”定义中的两个关系,进而重新表述以上定义关系(1)指集合C是点集F的子集,关系(2)指点集F是点集合C的子集这样根据集合的性质,可以用集合相等的概念来定义“曲线的方程”

    5、与“方程的曲线”,即:3练习:下列方程表示如图所示的直线C,对吗?为什么?(1);(2);(3)|x|-y=0.上题供学生思考,口答解:方程(1)、(2)、(3)都不是表示曲线C的方程第(1)题中曲线C上的点不全都是方程的解,如点(-1,-1)等,即不符合“曲线上的点的坐标都是方程的解”这一结论;第(2)题中,尽管“曲线C上的坐标都是方程的解”,但以方程的解为坐标的点不全在曲线C上,如点(2,-2)等,即不符合“以方程的解为坐标的点都在曲线上”这一结论;第(3)题中,类似(1)(2)得出不符合“曲线上的点的坐标都是方程的解”,“以方程的解为坐标的点都在曲线上”事实上,(1)(2)(3)中各方程

    6、表示的曲线应该是下图的三种情况:上述概念是本课的重点和难点,让学生自己通过讨论归纳出来,老师再说清楚这两大性质(纯粹性和完备性)的含义,使学生初步理解这个概念通过引导学生运用集合的表述,使学生对曲线和方程的关系的理解得到加深和强化,在记忆中上也趋于简化通过反倒加深对定义的理解。四例题1例1:证明与两条坐标轴的距离的积是常数的点的轨迹方程是证明:(1)如图,设是轨迹上的任意一点,因为点M与x轴的距离为,与y轴的距离为,所以: ,即是方程的根; (2)设点的坐标是方程的根,则:,即 ,而、是点到横轴、纵轴的距离,因此点到这两条直线的距离的积是常数k,点是曲线上的点。由(1)(2)可知,是与两条坐标

    7、轴的距离的积为常数的点的轨迹方程通过例题巩固定义。五练习1教科书P37 练习1、2六小结1、 曲线与方程的关系2、 如何证明、判断曲线为方程的曲线,方程为曲线的方程3、 曲线上的点所组成的集合与方程的解所组成的集合有什么关系?五、作业教科书习题2.1 A组1、2练习与测试:1如果曲线C上的点满足方程F(x,y)=0,则以下说法正确的是( )A.曲线C的方程是F(x,y)=0B.方程F(x,y)=0的曲线是CC.坐标满足方程F(x,y)=0的点在曲线C上D.坐标不满足方程F(x,y)=0的点不在曲线C上2.判断下列结论的正误,并说明理由.(1)过点A(3,0)且垂直于x轴的直线的方程为x=0;

    8、(2)到x轴距离为2的点的直线方程为y=-2;(3)到两坐标轴的距离乘积等于1的点的轨迹方程为xy=1;(4)ABC的顶点A(0,-3),B(1,0),C(-1,0),D为BC中点,则中线AD的方程为x=0 3.方程(3x-4y-12)log2(x+2y)-3=0的曲线经过点A(0,-3)、B(0,4)、C()、D(4,0)中的( )A.0个 B.1个 C.2个 D.3个4.已知点A(-3,0),B(0,),C(4,-),D(3sec, tan),其中在曲线上的点的个数为( )A.1 B.2 C.3 D.45证明动点P(x,y)到定点M(-a,0)的距离等于a(a0)的轨迹方程是 6.如果两条

    9、曲线的方程F1(x,y)=0和F2(x,y)=0,它们的交点M(x0,y0),求证:方程F1(x,y)+F2(x,y)=0表示的曲线也经过M点.(为任意常数)练习与测试解答:1.分析:判定曲线和方程的对应关系,必须注意两点:(1)曲线上的点的坐标都是这个方程的解,即直观地说“点不比解多”称为纯粹性;(2)以这个方程的解为坐标的点都在曲线上,即直观地说“解不比点多”,称为完备性,只有点和解一一对应,才能说曲线的方程,方程和曲线解:由已知条件,只能说具备纯粹性,但不一定具备完备性.故选D 2.分析:判断所给问题的正误,主要依据是曲线的方程及方程的曲线的定义,即考查曲线上的点的纯粹性和完备性.解:(

    10、1)满足曲线方程的定义.结论正确(2)因到x轴距离为2的点的直线方程还有一个;y=2,即不具备完备性.结论错误.(3)到两坐标轴的距离的乘积等于1的点的轨迹方程应为xy=1,即xy=1.所给问题不具备完备性结论错误(4)中线AD是一条线段,而不是直线,x=0(-3y0),所给问题不具备纯粹性.结论错误.3.分析:方程表示的两条直线3x-4y-12=0和x+2y-9=0,但应注意对数的真数大于0,x+2y0 解:由对数的真数大于0,得x+2y0.A(0,-3)、C()不合要求将B(0,4)代入方程检验,不合要求.将D(4,0)代入方程检验,合乎要求.故选B.4.分析:由曲线上的点与方程的解的关系

    11、,只要把点的坐标代入方程,若满足这个方程,说明这是这个方程的解,这个点就在该方程表示的曲线上.解:将点A(-3,0)、B(0,)、C(4,-)、D(3sec, tan)代入方程检验,只有点A和点B满足方程.故选B.5仿照课本例子,分两种情况易证6.分析:只要将M点的坐标代入方程.F1(x,y)+F2(x,y)=0,看点M的坐标是否满足方程即可证明:M(x0,y0)是曲线F1(x,y)=0和F2(x,y)=0的交点,F1(x0,y0)=0,F2(x0,y0)=0.F1(x0,y0)+F2(x0,y0)=0(R)M(x0,y0)在方程F1(x,y)+F2(x,y)=0所表示的曲线上.评述:方程F1(x,y)+F2(x,y)=0也称为过曲线F1(x,y)=0和F2(x,y)=0的交点的曲线系方程7

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021-2022高中数学人教A版选修2-1教案:2-1-1曲线与方程 (系列二) WORD版含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-461190.html
    相关资源 更多
  • 人教版五年级下册数学 期末测试卷附答案【巩固】.docx人教版五年级下册数学 期末测试卷附答案【巩固】.docx
  • 人教版五年级下册数学 期末测试卷附答案【实用】.docx人教版五年级下册数学 期末测试卷附答案【实用】.docx
  • 人教版五年级下册数学 期末测试卷附答案【完整版】.docx人教版五年级下册数学 期末测试卷附答案【完整版】.docx
  • 人教版五年级下册数学 期末测试卷附答案【夺分金卷】.docx人教版五年级下册数学 期末测试卷附答案【夺分金卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【基础题】.docx人教版五年级下册数学 期末测试卷附答案【基础题】.docx
  • 人教版五年级下册数学 期末测试卷附答案【培优】.docx人教版五年级下册数学 期末测试卷附答案【培优】.docx
  • 人教版五年级下册数学 期末测试卷附答案【培优b卷】.docx人教版五年级下册数学 期末测试卷附答案【培优b卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【培优a卷】.docx人教版五年级下册数学 期末测试卷附答案【培优a卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【名师推荐】.docx人教版五年级下册数学 期末测试卷附答案【名师推荐】.docx
  • 人教版五年级下册数学 期末测试卷附答案【典型题】.docx人教版五年级下册数学 期末测试卷附答案【典型题】.docx
  • 人教版五年级下册数学 期末测试卷附答案【b卷】.docx人教版五年级下册数学 期末测试卷附答案【b卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【a卷】.docx人教版五年级下册数学 期末测试卷附答案【a卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案ab卷.docx人教版五年级下册数学 期末测试卷附答案ab卷.docx
  • 人教版五年级下册数学 期末测试卷附答案.docx人教版五年级下册数学 期末测试卷附答案.docx
  • 人教版五年级下册数学 期末测试卷附完整答案(考点梳理).docx人教版五年级下册数学 期末测试卷附完整答案(考点梳理).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(网校专用).docx人教版五年级下册数学 期末测试卷附完整答案(网校专用).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(精选题).docx人教版五年级下册数学 期末测试卷附完整答案(精选题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(精品).docx人教版五年级下册数学 期末测试卷附完整答案(精品).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(有一套).docx人教版五年级下册数学 期末测试卷附完整答案(有一套).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(易错题).docx人教版五年级下册数学 期末测试卷附完整答案(易错题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(必刷).docx人教版五年级下册数学 期末测试卷附完整答案(必刷).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(夺冠).docx人教版五年级下册数学 期末测试卷附完整答案(夺冠).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(夺冠系列).docx人教版五年级下册数学 期末测试卷附完整答案(夺冠系列).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(名校卷).docx人教版五年级下册数学 期末测试卷附完整答案(名校卷).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(名师系列).docx人教版五年级下册数学 期末测试卷附完整答案(名师系列).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(各地真题).docx人教版五年级下册数学 期末测试卷附完整答案(各地真题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(历年真题).docx人教版五年级下册数学 期末测试卷附完整答案(历年真题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(典优).docx人教版五年级下册数学 期末测试卷附完整答案(典优).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(全国通用).docx人教版五年级下册数学 期末测试卷附完整答案(全国通用).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1