2021-2022高中数学人教版选修2-2教案:3-2-1复数的代数形式的加减运算及其几何意义 (二) WORD版含答案.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021-2022高中数学人教版选修2-2教案:3-2-1复数的代数形式的加减运算及其几何意义 二 WORD版含答案 2021 2022 高中 学人 选修 教案 复数 代数 形式 加减 运算 及其
- 资源描述:
-
1、32 复数代数形式的四则运算32.1复数代数形式的加减运算及其几何意义(教师用书独具)三维目标1知识与技能掌握复数加减运算的法则及运算律,理解复数加减运算的几何意义2过程与方法在问题探究过程中,体会和学习类比、数形结合等数学思想方法,感悟运算形成的基本过程3情感、态度与价值观通过探究复数加减运算法则的过程,感悟由特殊到一般的思想,同时由向量的加减法与复数的类比,理解复数加减的运算法则,知道事物之间是普遍联系的哲学规律重点难点重点:理解和掌握复数加减运算的两种运算形式及加法运算律,准确进行加减运算,初步运用加减法的几何意义解决简单问题难点:复数加减法的几何意义及其应用(教师用书独具)教学建议 建
2、议本节课采取自主探究式教学,这节课主要是复数的加减法运算,学生可以类比实数的加减法运算理解复数的加减法运算,让学生自主探讨例题1及变式训练的解法,总结规律方法在讨论复数加法的几何意义时,引导学生联想向量的加法并运用平行四边形法则来进行运算,复数减法的几何意义,可联想向量的减法运用三角形法则来进行运算教学中应让学生对复数的加法与向量的加法是怎样联系起来并得到统一的过程做出探究对于一些简单的问题让学生动手去做,让学生起到主体作用,教师起到主导作用教学流程创设问题情境,引出问题,引导学生思考两个复数的和与差的运算让学生自主完成填一填,使学生进一步了解复数加减运算的方法,及其满足的运算律由学生自主分析
3、例题1的运算方法并求解,教师只需指导完善解答疑惑并要求学生独立完成变式训练学生分组探究例题2解法,通过引导学生画图,认识复数与向量的对应关系,联想向量运算的几何意义,求出z1z2,完成互动探究完成当堂双基达标,巩固所学知识及应用方法并进行反馈矫正归纳整理,进行课堂小结,整体认识本节所学知识,强调重点内容和规律方法学生自主完成例题3变式训练,老师抽查完成情况,对出现问题及时指导让学生自主分析例题3,老师适当点拨解题思路,学生分组讨论给出解法老师组织解法展示,引导学生总结解题规律.课标解读1.熟练掌握复数的代数形式的加减法运算法则(重点)2理解复数加减法的几何意义,能够利用“数形结合”的思想解题(
4、难点)复数代数形式的加减运算【问题导思】已知复数z1abi,z2cdi(a,b,c,dR)1多项式的加减实质是合并同类项,类比想一想复数如何加减?【提示】两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(abi)(cdi)(ac)(bd)i.2复数的加法满足交换律和结合律吗?【提示】满足(1)运算法则:设z1abi,z2cdi(a、b、c、dR),则z1z2(ac)(bd)i,z1z2(ac)(bd)i.(2)加法运算律:交换律z1z2z2z1结合律(z1z2)z3z1(z2z3)复数加减法运算的几何意义【问题导思】如图,分别与复数abi,cdi对应1试写出,及,的坐标【提示】
5、(a,b),(c,d),(ac,bd),(ac,bd)2向量,对应的复数分别是什么?【提示】对应的复数是ac(bd)i,对应的复数是ac(bd)i.图321(1)复数加法的几何意义如图321:设复数z1,z2对应向量分别为,四边形OZ1ZZ2为平行四边形,则与z1z2对应的向量是.(2)复数减法的几何意义图322如图322所示,设,分别与复数z1abi,z2cdi对应,且,不共线,则这两个复数的差z1z2与向量(即)对应,这就是复数减法的几何意义这表明两个复数的差z1z2(即)与连接两个终点Z1,Z2,且指向被减数的向量对应.复数的加减运算计算下列各题:(1)(i)(i)1;(2)()()i;
6、(3)(56i)(22i)(33i)【思路探究】解答本题可根据复数加减运算的法则进行【自主解答】(1)原式()()i11i.(2)原式()(1)ii.(3)原式(523)6(2)3i11i.复数的加减法运算就是把复数的实部与实部,虚部与虚部分别相加减已知复数z满足z12i103i,求z.【解】z12i103i,z(103i)(2i1)95i.复数加减法的几何意义设及分别与复数z153i及复数z24i对应,试计算z1z2,并在复平面内作出.【思路探究】利用加法法则求z1z2,利用复数的几何意义作出.【自主解答】z153i,z24i,z1z2(53i)(4i)94i(5,3),(4,1),由复数的
7、几何意义可知,与复数z1z2对应,(5,3)(4,1)(9,4)作出向量如图所示1根据复数加减运算的几何意义可以把复数的加减运算转化为向量的坐标运算2利用向量进行复数的加减运算时,同样满足平行四边形法则和三角形法则3复数加减运算的几何意义为应用数形结合思想解决复数问题提供了可能在题设不变的情况下,计算z1z2,并在复平面内作出.【解】z1z2(53i)(4i)(54)(31)i12i.,故即为图中.复数加减法的综合问题已知|z1i|1,求|z34i|的最大值和最小值【思路探究】利用复数加减法的几何意义,以及数形结合的思想解题【自主解答】法一设wz34i,zw34i,z1iw45i.又|z1i|
8、1,|w45i|1.可知w对应的点的轨迹是以(4,5)为圆心,1为半径的圆如图(1)所示,|w|max1,|w|min1.(1)(2)法二由条件知复数z对应的点的轨迹是以(1,1)为圆心,1为半径的圆,而|z34i|z(34i)|表示复数z对应的点到点(3,4)的距离,在圆上与(3,4)距离最大的点为A,距离最小的点为B,如图(2)所示,所以|z34i|max1,|z34i|min1.|z1z2|表示复平面内z1,z2对应的两点间的距离利用此性质,可把复数模的问题转化为复平面内两点间的距离问题,从而进行数形结合,把复数问题转化为几何图形问题求解设z1,z2C,已知|z1|z2|1,|z1z2|
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-462305.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
