2019年高考数学(理科)二轮复习专题突破练6-3-2 随机变量及其分布 专题突破练19 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019年高考数学理科二轮复习专题突破练6-3-2随机变量及其分布 专题突破练19 WORD版含解析 2019 年高 数学 理科 二轮 复习 专题 突破 随机变量 及其 分布 19 WORD 解析
- 资源描述:
-
1、专题突破练19随机变量及其分布1.(2018东北三省三校联考一,理18)某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间-20,-10,需求量为100台;最低气温位于区间-25,-20),需求量为200台;最低气温位于区间-35,-25),需求量为300台.公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:最低气温()-35,-30)-30,-25)-25,-20)-20,-15)-15,-10天数112536162以最低气温位于
2、各区间的频率代替最低气温位于该区间的概率.(1)求11月份这种电暖气每日需求量X(单位:台)的分布列;(2)若公司销售部以每日销售利润Y(单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?2.某班将要举行篮球投篮比赛,比赛规则是:每位选手可以选择在A区投篮2次或选择在B区投篮3次,在A区每进一球得2分,不进球得0分;在B区每进一球得3分,不进球得0分,得分高的选手胜出.已知某参赛选手在A区和B区每次投篮进球的概率分别是.(1)如果该选手以在A,B区投篮得分的期望高者为选择投篮区的标准,问该选手应该选择哪个区投篮?请说明理由;(2)求该选手在A区投
3、篮得分高于在B区投篮得分的概率.3.(2018江西南昌三模,理19)质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.(1)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;(2)若从甲、乙两车间12个零件中随机抽取2个零件,用X表示乙车间的零件个数,求X的分布列与数学期望.4.医学上某种还没有完全攻克的疾病,治疗时需要通过药物控制其中的两项指标H和V.现有三种不同配方的药剂,根据分析,A
4、,B,C三种药剂能控制H指标的概率分别为0.5,0.6,0.75,能控制V指标的概率分别是0.6,0.5,0.4,能否控制H指标与能否控制V指标之间相互没有影响.(1)求A,B,C三种药剂中恰有一种能控制H指标的概率;(2)某种药剂能使两项指标H和V都得到控制就说该药剂有治疗效果.求三种药剂中有治疗效果的药剂种数X的分布列.5.(2018河北唐山一模,理18)某水产品经销商销售某种鲜鱼,售价为每千克20元,成本为每千克15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每千克损失3元.根据以往的销售情况,按50,150),150,250),250,350),350
5、,450),450,550进行分组,得到如图所示的频率分布直方图.(1)求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于350千克,而另一天日销售量低于350千克的概率;(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值.求日需求量X的分布列;该经销商计划每日进货300千克或400千克,以每日利润Y的数学期望值为决策依据,他应该选择每日进货300千克还是400千克?6.2019年是某市大力推进居民生活垃圾分类的关键一年,有关部门为宣传垃圾分类知识,面向该市市民进行了一次“垃圾分类知识”的网络问卷调查,每位市民仅有一次参与机会,通过抽样,得到参与问卷调查中的1
6、000人的得分数据,其频率分布直方图如图所示:(1)由频率分布直方图可以认为,此次问卷调查的得分Z服从正态分布N(,210),近似为这1 000人得分的平均值(同一组数据用该区间的中点值作代表),利用该正态分布求P(50.5Z94).(2)在(1)的条件下,有关部门为此次参加问卷调查的市民制定如下奖励方案:得分不低于可获赠2次随机话费,得分低于则只有1次;每次赠送的随机话费和对应概率如下:赠送话费(单位:元)1020概率现有一位市民要参加此次问卷调查,记X(单位:元)为该市民参加问卷调查获赠的话费,求X的分布列.附:14.5,若ZN(,2),则P(-Z+)0.682 7,P(-2Z+2)0.9
7、54 5.7.(2018湖南邵阳三模,理18)某运输公司根据以往从甲地到乙地的每日运输情况(运输量20,120),将运输量分为20,40),40,60),60,80),80,100),100,120)五组,并绘制了从甲地到乙地的日运输量x(单位:吨)的频率分布直方图,如图所示,将日运输量x落入各组的频率视为概率,并假设每天的运输量相互独立.(1)求该公司每天从甲地到乙地的日平均运输量(每组数据以区间的中点值为代表);(2)求未来3天,连续2天运输量不低于60吨,另一天日运输量低于60吨的概率;(3)该运输公司计划购置相同型号的货车n辆专门运输从甲地到乙地的货物,若一辆货车每天只能运输一趟,每辆
8、车每次最多只能装载20吨货物,满载发车,否则不发车,若发车,则每辆车每趟可获利2 000元,若未发车,则每辆车每天平均亏损600元,为使该公司每天的营业利润y最大,该公司应购置几辆该种货车?8.(2018山东潍坊一模,理19)某公司新上一条生产线,为保证新的生产线正常工作,需对该生产线进行检测.现从该生产线上随机抽取100件产品,测量产品数据,用统计方法得到样本的平均数=14,标准差=2,绘制如图所示的频率分布直方图.以频率值作为概率估计值.(1)从该生产线加工的产品中任意抽取一件,记其数据为X,依据以下不等式评判(P表示对应事件的概率):P(-X+)0.682 6;P(-2X+2)0.954
9、 4;P(-3X+3)0.997 4.评判规则为:若至少满足以上两个不等式,则生产状况为优,无需检修;否则需检修生产线,试判断该生产线是否需要检修;(2)将数据不在(-2,+2)内的产品视为次品,从该生产线加工的产品中任意抽取2件,次品数记为Y,求Y的分布列与数学期望E(Y).参考答案专题突破练19随机变量及其分布1.解 (1)由已知X的可能取值为100,200,300,X的分布列为X100200300P0.20.40.4(2)当订购200台时,E(Y)=200100-50(200-100)0.2+2002000.8=35 000(元).当订购250台时,E(Y)=200100-50(250-
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-571972.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
