2020-2021学年新教材高考数学 第四章 数列 章末复习课练习(含解析)(选修2).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020-2021学年新教材高考数学 第四章 数列 章末复习课练习含解析选修2 2020 2021 学年 新教材 高考 数学 第四 复习 练习 解析 选修
- 资源描述:
-
1、章末复习课一、等差(比)数列的基本运算1数列的基本运算以小题居多,但也可作为解答题第一步命题,主要考查利用数列的通项公式及求和公式,求数列中的项、公差、公比及前n项和等,一般试题难度较小2通过等差、等比数列的基本运算,培养数学运算、逻辑推理等核心素养例1在等比数列an中,已知a12,a416.(1)求数列an的通项公式;(2)若a3,a5分别为等差数列bn的第3项和第5项,试求数列bn的通项公式及前n项和Sn.解(1)设数列an的公比为q,由已知得162q3,解得q2,an22n12n,nN*.(2)由(1)得a38,a532,则b38,b532.设数列bn的公差为d,则有解得所以bn1612
2、(n1)12n28,nN*.所以数列bn的前n项和Sn6n222n,nN*.反思感悟在等差数列和等比数列的通项公式an与前n项和公式Sn中,共涉及五个量:a1,an,n,d或q,Sn,其中a1和d或q为基本量,“知三求二”是指将已知条件转换成关于a1,d或q,an,Sn,n的方程组,利用方程的思想求出需要的量,当然在求解中若能运用等差(比)数列的性质会更好,这样可以化繁为简,减少运算量,同时还要注意整体代入思想方法的运用跟踪训练1已知等差数列an的公差d1,前n项和为Sn.(1)若1,a1,a3成等比数列,求a1;(2)在(1)的条件下,若a10,求Sn.解(1)因为数列an的公差d1,且1,
3、a1,a3成等比数列,所以a1(a12),即aa120,解得a11或a12.(2)因为a10,所以a12,所以Sn2n,nN*.二、等差、等比数列的判定1判断等差或等比数列是数列中的重点内容,经常在解答题中出现,对给定条件进行变形是解题的关键所在,经常利用此类方法构造等差或等比数列2通过等差、等比数列的判定与证明,培养逻辑推理、数学运算等核心素养例2已知数列an满足a11,nan12(n1)an.设bn.(1)求b1,b2,b3;(2)判断数列bn是否为等比数列,并说明理由;(3)求数列an的通项公式解(1)由条件可得an1an.将n1代入得,a24a1,而a11,所以a24.将n2代入得,a
4、33a2,所以a312.从而b11,b22,b34.(2)bn是首项为1,公比为2的等比数列理由如下:由条件可得,即bn12bn,又b11,所以bn是首项为1,公比为2的等比数列(3)由(2)可得2n1,所以ann2n1,nN*.反思感悟判断和证明数列是等差(比)数列的方法(1)定义法:对于n1的任意自然数,验证an1an为与正整数n无关的常数(2)中项公式法:若2anan1an1(nN*,n2),则an为等差数列. 若aan1an1(nN*,n2且an0),则an为等比数列(3)通项公式法:anknb(k,b是常数)an是等差数列;ancqn(c,q为非零常数)an是等比数列(4)前n项和公
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-580168.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
