2021中考数学重难点专练 二次函数综合题(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021中考数学重难点专练 二次函数综合题含解析 2021 中考 数学 难点 二次 函数 综合 解析
- 资源描述:
-
1、1.如图,顶点为的抛物线与轴交于,两点,与轴交于点(1)求这条抛物线对应的函数表达式;(2)问在轴上是否存在一点,使得为直角三角形?若存在,求出点的坐标;若不存在,说明理由(3)若在第一象限的抛物线下方有一动点,满足,过作轴于点,设的内心为,试求的最小值【解析】(1)抛物线过点, 解得:这条抛物线对应的函数表达式为(2)在轴上存在点,使得为直角三角形顶点设点坐标为,若,则解得:若,则解得:,或若,则解得:综上所述,点坐标为或或或时,为直角三角形(3)如图,过点作轴于点,于点,于点轴于点四边形是矩形点为的内心,矩形是正方形设点坐标为,化简得:配方得:点与定点,的距离为点在以点,为圆心,半径为的圆
2、在第一象限的弧上运动当点在线段上时,最小最小值为2.如图,抛物线yax2+bx5(a0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为yx+n求抛物线的解析式点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动当其中一个点到达终点时,另一点也停止运动设运动时间为t秒,求t为何值时,PBE的面积最大并求出最大值过点A作AMBC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标【解析】点B、C在直线为yx+n上,B(n,0)
3、、C(0,n),点A(1,0)在抛物线上,a1,b6,抛物线解析式:yx2+6x5;由题意,得,PB4t,BE2t,由知,OBC45,点P到BC的高h为BPsin45(4t),SPBEBEh,当t2时,PBE的面积最大,最大值为2;由知,BC所在直线为:yx5,点A到直线BC的距离d2,过点N作x轴的垂线交直线BC于点P,交x轴于点H设N(m,m2+6m5),则H(m,0)、P(m,m5),易证PQN为等腰直角三角形,即NQPQ2,PN4,NH+HP4,m2+6m5(m5)4解得m11,m24,点A、M、N、Q为顶点的四边形是平行四边形,m4;NH+HP4,m5(m2+6m5)4解得m1,m2
4、,点A、M、N、Q为顶点的四边形是平行四边形,m5,m,NHHP4,(m2+6m5)(m5)4,解得m1,m2,点A、M、N、Q为顶点的四边形是平行四边形,m0,m,综上所述,若点A、M、N、Q为顶点的四边形是平行四边形,点N的横坐标为:4或或3. (2019 四川省成都市)如图,抛物线yax2+bx+c经过点A(2,5),与x轴相交于B(1,0),C(3,0)两点(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将BCD沿直线BD翻折得到BCD,若点C恰好落在抛物线的对称轴上,求点C和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当C
5、PQ为等边三角形时,求直线BP的函数表达式【解析】(1)由题意得:解得,抛物线的函数表达式为yx22x3(2)抛物线与x轴交于B(1,0),C(3,0),BC4,抛物线的对称轴为直线x1,如图,设抛物线的对称轴与x轴交于点H,则H点的坐标为(1,0),BH2,由翻折得CBCB4,在RtBHC中,由勾股定理,得CH2,点C的坐标为(1,2),tan,CBH60,由翻折得DBHCBH30,在RtBHD中,DHBHtanDBH2tan30,点D的坐标为(1,)(3)取(2)中的点C,D,连接CC,BCBC,CBC60,CCB为等边三角形分类讨论如下:当点P在x轴的上方时,点Q在x轴上方,连接BQ,C
6、PPCQ,CCB为等边三角形,CQCP,BCCC,PCQCCB60,BCQCCP,BCQCCP(SAS),BQCP点Q在抛物线的对称轴上,BQCQ,CPCQCP,又BCBC,BP垂直平分CC,由翻折可知BD垂直平分CC,点D在直线BP上,设直线BP的函数表达式为ykx+b,则,解得,直线BP的函数表达式为y当点P在x轴的下方时,点Q在x轴下方PCQ,CCB为等边三角形,CPCQ,BCCC,CCBQCPCCB60BCPCCQ,BCPCCQ(SAS),CBPCCQ,BCCC,CHBC,CBP30,设BP与y轴相交于点E,在RtBOE中,OEOBtanCBPOBtan301,点E的坐标为(0,)设直
7、线BP的函数表达式为ymx+n,则,解得,直线BP的函数表达式为y综上所述,直线BP的函数表达式为或4.已知抛物线yx2bx+c(b,c为常数,b0)经过点A(1,0),点M(m,0)是x轴正半轴上的动点()当b2时,求抛物线的顶点坐标;()点D(b,yD)在抛物线上,当AMAD,m5时,求b的值;()点Q(b+,yQ)在抛物线上,当AM+2QM的最小值为时,求b的值【解析】()抛物线yx2bx+c经过点A(1,0),1+b+c0,即cb1,当b2时,yx22x3(x1)24,抛物线的顶点坐标为(1,4);()由()知,抛物线的解析式为yx2bxb1,点D(b,yD)在抛物线yx2bxb1上,
8、yDb2bbb1b1,由b0,得b0,b10,点D(b,b1)在第四象限,且在抛物线对称轴x的右侧,如图1,过点D作DEx轴,垂足为E,则点E(b,0),AEb+1,DEb+1,得AEDE,在RtADE中,ADEDAE45,ADAE,由已知AMAD,m5,5(1)(b+1),b31;()点Q(b+,yQ)在抛物线yx2bxb1上,yQ(b+)2b(b+)b1,可知点Q(b+,)在第四象限,且在直线xb的右侧,AM+2QM2(AM+QM),可取点N(0,1),如图2,过点Q作直线AN的垂线,垂足为G,QG与x轴相交于点M,由GAM45,得AMGM,则此时点M满足题意,过点Q作QHx轴于点H,则点
9、H(b+,0),在RtMQH中,可知QMHMQH45,QHMH,QMMH,点M(m,0),0()(b+)m,解得,m,AM+2QM,()(1)+2(b+)(),b4 5.如图,在平面直角坐标系中,抛物线yax2+bx+c经过A(1,0),B(4,0),C(0,4)三点(1)求抛物线的解析式及顶点D的坐标;(2)将(1)中的抛物线向下平移个单位长度,再向左平移h(h0)个单位长度,得到新抛物线若新抛物线的顶点D在ABC内,求h的取值范围;(3)点P为线段BC上一动点(点P不与点B,C重合),过点P作x轴的垂线交(1)中的抛物线于点Q,当PQC与ABC相似时,求PQC的面积【解析】(1)函数表达式
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2021-2022学年新教材部编版语文选择性必修上册课件:第四单元 逻辑的力量 .pptx
