分享
分享赚钱 收藏 举报 版权申诉 / 7

类型2021届高考数学二轮复习 专题能力训练13 空间几何体 理(含解析).docx

  • 上传人:a****
  • 文档编号:612749
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:7
  • 大小:342.70KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021届高考数学二轮复习 专题能力训练13 空间几何体 理含解析 2021 高考 数学 二轮 复习 专题 能力 训练 13 空间 几何体 解析
    资源描述:

    1、专题能力训练13空间几何体专题能力训练第32页一、能力突破训练1.已知过圆锥的轴的截面是顶角为120的等腰三角形,若圆锥的母线长为2,则该圆锥的体积为()A.3B.C.23D.2答案:B解析:由题意可知,圆锥的底面半径为3,高为1,所以该圆锥的体积为V=13Sh=13(3)21=.2.(2020全国,理3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.5-14B.5-12C.5+14D.5+12答案:C解析:如图,设正四棱锥的高为h,底面边长为a,侧面

    2、三角形底边上的高为h,则有h2=12ah,h2=h2-a22,因此有h2-a22=12ah,化简得4ha2-2ha-1=0,解得ha=5+14.(负值舍去)3.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是283,则它的表面积是()A.17B.18C.20D.28答案:A解析:由三视图可知该几何体是球截去18后所得几何体,则7843R3=283,解得R=2,所以它的表面积为784R2+34R2=14+3=17.4.已知平面截球O的球面得圆M,过圆心的平面与的夹角为6,且平面截球O的球面得圆N.已知球的半径为5,圆M的面积为9,则圆N的半径为()A.3B

    3、.13C.4D.21答案:B解析:如图,OA=5,AM=3,OM=4.NMO=3,ON=OMsin3=23.又OB=5,NB=OB2-ON2=13,故选B.5.已知一个几何体的三视图如图所示,其中三个三角形均是直角三角形,图形给出的数据均是直角边的长度,则该几何体的外接球的体积为()A.24B.6C.86D.6答案:D解析:几何体为三棱锥,且底面为直角三角形(形状与俯视图相同),侧棱垂直于底面,将该三棱锥补成长、宽、高分别为2,1,1的长方体,其外接球的直径为2R=22+12+12=6.则该几何体的外接球的体积为V=43623=6.6.(2020全国,理10)已知ABC是面积为934的等边三角

    4、形,且其顶点都在球O的球面上.若球O的表面积为16,则O到平面ABC的距离为()A.3B.32C.1D.32答案:C解析:设等边三角形ABC的边长为a,球O的半径为R,ABC的外接圆的半径为r,则SABC=34a2=934,S球O=4R2=16,解得a=3,R=2.故r=2332a=3.设O到平面ABC的距离为d,则d2+r2=R2,故d=R2-r2=4-3=1.故选C.7.在四面体ABCD中,AB=CD=6,AC=BD=4,AD=BC=5,则四面体ABCD的外接球的表面积为.答案:772解析:构造一个长方体,使得它的三条面对角线长分别为4,5,6,设长方体的三条边长分别为x,y,z,则x2+

    5、y2+z2=772,而长方体的外接球就是四面体的外接球,所以S=4R2=772.8.(2019北京,理11)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为.答案:40解析:在正方体中还原该几何体,如图所示.该几何体的体积V=43-12(2+4)24=40.9.(2018全国,理16)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成的角为45.若SAB的面积为515,则该圆锥的侧面积为.答案:402解析:设O为底面圆圆心,cosASB=78,sinASB=1-782=158.SASB=12|AS|BS|1

    6、58=515.SA2=80.SA=45.SA与圆锥底面所成的角为45,SOA=90,SO=OA=22SA=210.S圆锥侧=rl=45210=402.10.我国古代数学名著九章算术商功中阐述:“斜解立方,得两堑堵.斜解堑堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”若称为“阳马”的某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,对该几何体有如下描述:四个侧面都是直角三角形;最长的侧棱长为26;四个侧面中有三个侧面是全等的直角三角形;外接球的表面积为24.其中正确的描述的序号为.答案:解析:由三视图还原原几何体,如图所示,可知该几何体为

    7、四棱锥,PA底面ABCD,PA=2,底面ABCD为矩形,AB=2,BC=4,则四个侧面都是直角三角形,故正确;最长侧棱为PC,长为26,故正确;由已知可得,PB=22,PC=26,PD=25,则四个侧面均不全等,故错误;把四棱锥补形为长方体,则其外接球的半径为12PC=6,其表面积为4(6)2=24,故正确.11.如图,在长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面把该长方体分成的两部分体积的比

    8、值.解:(1)交线围成的正方形EHGF如图所示.(2)作EMAB,垂足为M,则AM=A1E=4,EB1=12,EM=AA1=8.因为EHGF为正方形,所以EH=EF=BC=10.于是MH=EH2-EM2=6,AH=10,HB=6.因为长方体被平面分成两个高为10的直棱柱,所以其体积的比值为9779也正确.二、思维提升训练12.(2020全国,理10)已知A,B,C为球O的球面上的三个点,O1为ABC的外接圆.若O1的面积为4,AB=BC=AC=OO1,则球O的表面积为()A.64B.48C.36D.32答案:A解析:由题意知O1的半径r=2.由正弦定理知ABsinC=2r,OO1=AB=2rs

    9、in60=23,球O的半径R=r2+OO12=4.球O的表面积为4R2=64.13.如图,在矩形ABCD中,AB=2,AD=4,点E,F分别在AB,CD上,且AEBE=DFCF=3.若沿点E,F连线折成的多面体如图所示,使AB平面BCFE,则该多面体的正视图的面积为()A.42B.22C.32D.6答案:A解析:由题意,得AE=32,BE=12.由AB平面BCFE,得ABBE,所以AB=AE2-BE2=2,所求多面体的正视图的面积为24=42.14.如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,

    10、AB为底边的等腰三角形,沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D,E,F重合,得到三棱锥.当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.答案:415解析:如图所示,连接OD,交BC于点G.由题意知ODBC,OG=36BC.设OG=x,则BC=23x,DG=5-x,三棱锥的高h=DG2-OG2=25-10x+x2-x2=25-10x.因为SABC=1223x3x=33x2,所以三棱锥的体积V=13SABCh=3x225-10x=325x4-10x5.令f(x)=25x4-10x5,x0,52,则f(x)=100x3-50x4.令f(x)=0,

    11、可得x=2,则f(x)在(0,2)单调递增,在2,52单调递减,所以f(x)max=f(2)=80.所以V380=415,所以三棱锥体积的最大值为415.15.若三棱锥S-ABC的所有顶点都在球O的球面上,SA平面ABC,SA=215,AB=1,AC=2,BAC=60,则球O的表面积为.答案:64解析:如图,三棱锥S-ABC的所有顶点都在球O的球面上,因为AB=1,AC=2,BAC=60,所以BC=3,所以ABC=90.所以ABC截球O所得的圆O的半径r=1.设OO=x,球O的半径为R,则R2=x2+12,R2=(SA-x)2+12,所以x2+1=(215-x)2+1,解得x=15,R2=(1

    12、5)2+12,R=4.所以球O的表面积为4R2=64.16.如图,在矩形ABCD中,AB=4,BC=3,沿对角线AC把矩形折成二面角D-AC-B(如图),并且点D在平面ABC内的射影落在AB上.(1)证明:AD平面DBC;(2)若在四面体D-ABC内有一球,问:当球的体积最大时,球的半径是多少?答案:(1)证明设D在平面ABC内的射影为H,则H在AB上,连接DH,如图,则DH平面ABC,得DHBC.又ABBC,ABDH=H,所以BC平面ADB,故ADBC.又ADDC,DCBC=C,所以AD平面DBC.(2)解当球的体积最大时,易知球与三棱锥D-ABC的各面相切,设球的半径为R,球心为O,则VD-ABC=13R(SABC+SDBC+SDAC+SDAB).由已知可得SABC=SADC=6.过点D作DGAC于点G,连接GH,如图,可知HGAC.易得DG=125,HG=2720,DH=DG2-HG2=374,SDAB=124374=372.在DAB和BCD中,因为AD=BC,AB=DC,DB=DB,所以DABBCD,故SDBC=372,VD-ABC=136374=372.则R36+327+6+327=372,于是(4+7)R=327,所以R=372(4+7)=47-76.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021届高考数学二轮复习 专题能力训练13 空间几何体 理(含解析).docx
    链接地址:https://www.ketangku.com/wenku/file-612749.html
    相关资源 更多
  • 人教版数学四年级上学期期末综合素养提升卷及参考答案【实用】.docx人教版数学四年级上学期期末综合素养提升卷及参考答案【实用】.docx
  • 人教版数学四年级上学期期末综合素养提升卷及参考答案【培优】.docx人教版数学四年级上学期期末综合素养提升卷及参考答案【培优】.docx
  • 人教版数学四年级上学期期末综合素养提升卷及参考答案1套.docx人教版数学四年级上学期期末综合素养提升卷及参考答案1套.docx
  • 人教版数学四年级上学期期末综合素养提升卷及免费答案.docx人教版数学四年级上学期期末综合素养提升卷及免费答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷及一套答案.docx人教版数学四年级上学期期末综合素养提升卷及一套答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷及1套完整答案.docx人教版数学四年级上学期期末综合素养提升卷及1套完整答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷及1套参考答案.docx人教版数学四年级上学期期末综合素养提升卷及1套参考答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷参考答案.docx人教版数学四年级上学期期末综合素养提升卷参考答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷加下载答案.docx人教版数学四年级上学期期末综合素养提升卷加下载答案.docx
  • 人教版数学四年级上学期期末综合素养提升卷下载.docx人教版数学四年级上学期期末综合素养提升卷下载.docx
  • 人教版数学四年级上学期期末综合素养提升卷【黄金题型】.docx人教版数学四年级上学期期末综合素养提升卷【黄金题型】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【重点】.docx人教版数学四年级上学期期末综合素养提升卷【重点】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【轻巧夺冠】.docx人教版数学四年级上学期期末综合素养提升卷【轻巧夺冠】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【能力提升】.docx人教版数学四年级上学期期末综合素养提升卷【能力提升】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【考点梳理】.docx人教版数学四年级上学期期末综合素养提升卷【考点梳理】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【网校专用】.docx人教版数学四年级上学期期末综合素养提升卷【网校专用】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【综合题】.docx人教版数学四年级上学期期末综合素养提升卷【综合题】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【综合卷】.docx人教版数学四年级上学期期末综合素养提升卷【综合卷】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【精练】.docx人教版数学四年级上学期期末综合素养提升卷【精练】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【真题汇编】.docx人教版数学四年级上学期期末综合素养提升卷【真题汇编】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【最新】.docx人教版数学四年级上学期期末综合素养提升卷【最新】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【易错题】.docx人教版数学四年级上学期期末综合素养提升卷【易错题】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【必考】.docx人教版数学四年级上学期期末综合素养提升卷【必考】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【必刷】.docx人教版数学四年级上学期期末综合素养提升卷【必刷】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【实验班】.docx人教版数学四年级上学期期末综合素养提升卷【实验班】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【学生专用】.docx人教版数学四年级上学期期末综合素养提升卷【学生专用】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【夺冠系列】.docx人教版数学四年级上学期期末综合素养提升卷【夺冠系列】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【夺冠】.docx人教版数学四年级上学期期末综合素养提升卷【夺冠】.docx
  • 人教版数学四年级上学期期末综合素养提升卷【培优】.docx人教版数学四年级上学期期末综合素养提升卷【培优】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1