2021高考数学(理)导学大一轮人教A广西专用考点规范练63 二项分布与正态分布 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021高考数学理导学大一轮人教A广西专用考点规范练63二项分布与正态分布 WORD版含解析 2021 高考 数学 导学大 一轮 广西 专用 考点 规范 63 二项分布 正态分布 WORD 解析
- 资源描述:
-
1、考点规范练63二项分布与正态分布考点规范练A册第44页基础巩固1.(2019河北石家庄高三模拟七)从装有若干个大小相同的红球、白球和黄球的袋中随机摸出1个球,摸到红球、白球和黄球的概率分别为12,13,16,从袋中随机摸出一个球,记下颜色后放回,连续摸3次,则记下的颜色中有红有白但没有黄的概率为()A.536B.56C.512D.12答案:C解析:设摸到红球、白球、黄球分别为事件A,B,C,则P(A)=12,P(B)=13,P(C)=16,从袋中随机摸出一个球,记下颜色后放回,连续摸3次,记下的颜色中有红有白但没有黄的概率P=3P(AAB)+3P(ABB)=3121213+121313=512
2、.2.已知随机变量服从正态分布N(2,2),P(4)=0.8,则P(02)=()A.0.6B.0.4C.0.3D.0.2答案:C解析:P(4)=0.8,P(4)=0.2.由题意知图象的对称轴为直线x=2,P(0)=P(4)=0.2,P(04)=1-P(0)-P(4)=0.6.P(02)=12P(04)=0.3.3.一个盒子里装有大小、形状、质地相同的12个球,其中黄球5个、蓝球4个、绿球3个.现从盒子中随机取出两个球,记事件A为“取出的两个球颜色不同”,事件B为“取出一个黄球、一个绿球”,则P(B|A)=()A.1247B.211C.2047D.1547答案:D解析:因为P(A)=54+53+
3、43C122=4766,P(AB)=53C122=522,所以P(B|A)=P(AB)P(A)=1547.4.甲、乙两名同学参加一项射击比赛游戏,其中任何一人射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为35和p,且甲、乙两人各射击一次得分之和为2的概率为920.假设甲、乙两人射击互不影响,则p的值为()A.35B.45C.34D.14答案:C解析:设“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则“甲射击一次,未击中目标”为事件A,“乙射击一次,未击中目标”为事件B,则P(A)=35,P(A)=1-35=25,P(B)=p,P(B)=1-p,依
4、题意得35(1-p)+25p=920,解得p=34.故选C.5.一袋中有5个白球、3个红球,这些球除颜色外完全相同.现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X=12)等于()A.C12103810582B.C12938958238C.C119582382D.C1193810582答案:D解析:由题意知第12次取到红球,前11次中恰有9次红球2次白球,因为每次取到红球的概率为38,所以P(X=12)=C11938958238=C1193810582.6.三个元件T1,T2,T3正常工作的概率分别为12,23,34,且是相互独立的.如图,
5、将T2,T3两个元件并联后再与T1元件串联接入电路,则电路不发生故障的概率是()A.1124B.2324C.14D.1732答案:A解析:记T1正常工作为事件A,记T2正常工作为事件B,记T3正常工作为事件C,则P(A)=12,P(B)=23,P(C)=34,电路不发生故障,则满足T1正常工作,T2,T3至少有一个正常工作.T2,T3至少有一个正常工作的概率为P1=1-P(B C)=1-1-231-34=1112.故电路不发生故障的概率P=121112=1124.7.(2019全国,理15)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲
6、队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以41获胜的概率是.答案:0.18解析:前五场中有一场客场输时,甲队以41获胜的概率是0.630.50.52=0.108;前五场中有一场主场输时,甲队以41获胜的概率是0.40.620.520.6=0.072.综上所述,甲队以41获胜的概率是0.108+0.072=0.18.8.1 000名考生的某次成绩近似服从正态分布N(530,502),则成绩在630分以上的考生人数约为.(注:正态分布N(,2)在区间(-,+),(-2,+2),(-3,+3)内取值的概率分别为0.6
7、82 7,0.954 5,0.997 3)答案:23解析:由题意可知=530,=50,在区间(430,630)的概率为0.954 5,故成绩在630分以上的概率为1-0.954 520.023,因此成绩在630分以上的考生人数约为1 0000.023=23.9.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是.答案:0.958解析:透镜落地3次,恰在第一次落地打破的概率为P1=0.3,恰在第二次落地打破的概率为P2=0.70.4=0.28,恰在第三
8、次落地打破的概率为P3=0.70.60.9=0.378,透镜落地3次以内(含3次)被打破的概率P=P1+P2+P3=0.958.10.设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.(1)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少?(2)计算这一小时内至少有一台机器需要照顾的概率.解:记“机器甲需要照顾”为事件A,“机器乙需要照顾”为事件B,“机器丙需要照顾”为事件C.由题意,各台机器是否需要照顾相互之间没有影响,因此,A,B,C是相互独立事件.(1)由已知得
9、P(AB)=P(A)P(B)=0.05,P(AC)=P(A)P(C)=0.1,P(BC)=P(B)P(C)=0.125.解得P(A)=0.2,P(B)=0.25,P(C)=0.5.所以甲、乙、丙每台机器需要照顾的概率分别为0.2,0.25,0.5.(2)记A的对立事件为A,B的对立事件为B,C的对立事件为C,则P(A)=0.8,P(B)=0.75,P(C)=0.5,于是P(ABC)=1-P(ABC)=1-P(A)P(B)P(C)=0.7.所以这一小时内至少有一台机器需要照顾的概率为0.7.11.某袋子中有1个白球和2个红球,这些球除颜色外完全相同.(1)每次取1个球,不放回,直到取到白球为止,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-632195.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
