2022-2023学年京改版八年级数学上册第十二章三角形定向攻克试卷(含答案详解版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 改版 八年 级数 上册 第十二 三角形 定向 攻克 试卷 答案 详解
- 资源描述:
-
1、京改版八年级数学上册第十二章三角形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,平分,于点的角平分线所在直线与射线相交于点,若,且,则的度数为()ABCD2、如图,在四边形ABCD中
2、,A=60,B=D=90,AD=8,AB=7,则BC+CD等于()A6B5C4D33、如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得ABC65,ACB35,然后在M处立了标杆,使MBC65,MCB35,得到MBCABC,所以测得MB的长就是A,B两点间的距离,这里判定MBCABC的理由是()ASASBAAACSSSDASA4、如图,在ABC中,AC5,AB7,AD平分BAC,DEAC,DE2,则ABC的面积为()A14B12C10D75、若三角形的三边为a,b,c、满足a2+b2+c2+506a+8b+10c,此三角形的形状是()A锐角三角形B直角三角形C钝角三角形D
3、不确定6、如图,ACD是ABC的外角,CE平分ACD,若A=60,B=40,则ECD等于()A40B45C50D557、将一副三角尺按如图所示的方式摆放,则的大小为()ABCD8、平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A1B2C7D89、如图,在中,H是高MQ和NR的交点,且MQ=NQ,已知PQ5,NQ9,则MH的长为()A3B4C5D610、如图所示,是的边上的中线,cm,cm,则边的长度可能是()A3cmB5cmC14cmD13cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,是的中线,点F在上,延长交于
4、点D若,则_2、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了_米3、如图,将矩形ABCD沿MN折叠,使点B与点D重合,若DNM75,则AMD_4、在RtABC中,C90,AC9,AB15,则点C到AB的距离是_5、若一个三角形的三边长分别为5,12,13,则此三角形的最长边上的高为_三、解答题(5小题,每小题10分,共计50分)1、如图,已知ABC,ACAB,C45请用尺规作图法,在AC边上求作一点P,使PBC45(保留作图痕迹不写作法)2、已知a、b、c是ABC的三边,且满足,且a+b+c
5、=12,请你探索ABC的形状3、如图,在ABC中,ACB90,用直尺和圆规在斜边AB上作一点P,使得点P到点B的距离与点P到边AC的距离相等(保留作图痕迹,不写作法)4、如图,已知ABC求作:BC边上的高与内角B的角平分线的交点5、如图,已知在中,求证:-参考答案-一、单选题1、C【解析】【分析】由角平分线的定义可以得到,设,假设,通过角的等量代换可得到,代入的值即可【详解】平分,平分,设可以假设,设,则故答案选:C【考点】本题主要考查了角平分线的定义以及角的等量代换,三角形的内角和定理,外角的性质,二元一次方程组的应用,灵活设立未知数代换角是解题的关键2、B【解析】【分析】延长DC至E,构建
6、直角ADE,解直角ADE求得DE,BE,根据BE解直角CBE可得BC,CE,进而求解【详解】如图,延长AB、DC相交于E,在RtADE中,可求得AE2-DE2=AD2,且AE=2AD,计算得AE=16,DE=8,于是BE=AE-AB=9,在RtBEC中,可求得BC2+BE2=CE2,且CE=2BC,BC=3,CE=6,于是CD=DE-CE=2,BC+CD=5故选B【考点】本题考查了勾股定理的运用,考查了30角所对的直角边是斜边的一半的性质,本题中构建直角ADE求BE,是解题的关键3、D【解析】【分析】利用全等三角形的判定方法进行分析即可【详解】解:在ABC和MBC中,MBCABC(ASA),故
7、选:D【考点】本题考查了全等三角形的应用,熟练掌握三角形全等的判定定理是解题的关键4、B【解析】【分析】过点D作DFAB于点F,利用角平分线的性质得出,将的面积表示为面积之和,分别以AB为底,DF为高,AC为底,DE为高,计算面积即可求得【详解】过点D作DFAB于点F,AD平分BAC,DEAC,DFAB,, ,故选:B【考点】本题考查角平分线的性质,角平分线上的点到角两边的距离相等,熟记性质作出辅助线是解题关键5、B【解析】【分析】已知等式变形后,利用完全平方公式化简,利用非负数的性质求出a,b,c的值,即可做出判断【详解】解:根据题意得:a2+b2+c2+50-6a-8b-10c=0,(a3
8、)2(b5)2(c5)20,a30,b50,c50,a3,b4,c5,a2b2=c2,则三角形形状为直角三角形故选:B【考点】此题考查了因式分解的应用,熟练掌握完全平方公式是解本题的关键6、C【解析】【分析】根据三角形外角性质求出ACD,根据角平分线定义求出即可【详解】A=60,B=40,ACD=A+B=100,CE平分ACD,ECD=ACD=50,故选C【考点】本题考查了角平分线定义和三角形外角性质,熟记三角形外角性质的内容是解此题的关键7、B【解析】【分析】先根据直角三角板的性质得出ACD的度数,再由三角形内角和定理即可得出结论【详解】解:如图所示,由一副三角板的性质可知:ECD=60,B
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-634572.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
