2022-2023学年人教版九年级数学上册第二十四章圆专题练习试卷(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 人教版 九年级 数学 上册 第二 十四 专题 练习 试卷 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个商标图案如图中阴影部分,在长方形中,以点为圆心,为半径作圆与的延长线相交于点,则商标图案的面积是()ABCD2、
2、如图,公园内有一个半径为18米的圆形草坪,从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点,为圆心,小强从走到,走便民路比走观赏路少走()米.ABCD3、已知O的半径为4,点O到直线m的距离为d,若直线m与O公共点的个数为2个,则d可取()A5B4.5C4D04、如图,O的半径为5,AB为弦,点C为的中点,若ABC=30,则弦AB的长为()AB5CD55、如图,O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与O的位置关系是()A在O内B在O上C在O外D以上都有可能6、如图,正五边形内接于,为上的一点(点不与点重合),则的度数为()ABCD7、
3、如图,是的弦,点在过点的切线上,交于点若,则的度数等于()ABCD8、已知O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A30B60C30或150D60或1209、已知圆的半径为扇形的圆心角为,则扇形的面积为()ABCD10、在平面直角坐标系xOy中,已知点A(4,3),以原点O为圆心,5为半径作O,则()A点A在O上B点A在O内C点A在O外D点A与O的位置关系无法确定第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD的对角线AC,BD交于点O,分别以点A,C为圆心,AO长为半径画弧,分别交AB,CD于点E,F若BD4,CAB
4、36,则图中阴影部分的面积为_(结果保留)2、刘徽是我国魏晋时期卓越的数学家,他在九章算术中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积来近似估计的面积,设的半径为1,则_.3、如图,AB为圆O的切线,点A为切点,OB交圆O于点C,点D在圆O上,连接AD、CD、OA,若ADC=25,则B的度数为_4、如图,在一边长为的正六边形中,分别以点A,D为圆心,长为半径,作扇形,扇形,则图中阴影部分的面积为_(结果保留)5、如图,在O中,的度数等于250,半径OC垂直于弦AB,垂足为D,那么AC的度数等于_度三、解答题(5小题,每小题10分,共计
5、50分)1、如图,已知MAN,按下列要求补全图形(要求利用没有刻度的直尺和圆规作图,不写作法,保留作图痕迹)在射线AN上取点O,以点O为圆心,以OA为半径作O分别交AM、AN于点C、B;在MAN的内部作射线AD交O于点D,使射线AD上的各点到MAN的两边距离相等,请根据所作图形解答下列问题;(1)连接OD,则OD与AM的位置关系是 ,理论依据是 ;(2)若点E在射线AM上,且DEAM于点E,请判断直线DE与O的位置关系;(3)已知O的直径AB6cm,当弧BD的长度为 cm时,四边形OACD为菱形2、已知PA,PB分别与O相切于点A,B,APB80,C为O上一点(1)如图,求ACB的大小;(2)
6、如图,AE为O的直径,AE与BC相交于点D若ABAD,求EAC的大小3、已知:如图,、是的切线,切点分别是、,为上一点,过点作的切线,交、于、点,已知,求的周长4、如图,四边形内接于,对角线,垂足为,于点,直线与直线于点(1)若点在内,如图1,求证:和关于直线对称;(2)连接,若,且与相切,如图2,求的度数5、如图,的两条弦(AB不是直径),点E为AB中点,连接EC,ED(1)直线EO与AB垂直吗?请说明理由;(2)求证:-参考答案-一、单选题1、D【解析】【分析】根据题意作辅助线DE、EF使BCEF为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依据面积公
7、式进行计算即可得出答案【详解】解:作辅助线DE、EF使BCEF为一矩形则SCEF=(8+4)42=24cm2,S正方形ADEF=44=16cm2,S扇形ADF=4cm2,阴影部分的面积=24-(16-4)=故选:D【考点】本题主要考查扇形的面积计算,解题的关键是作出辅助线并从图中看出阴影部分的面积是由哪几部分组成的2、D【解析】【分析】作OCAB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出A,从而得到OC和AC,可得AB,然后利用弧长公式计算出的长,最后求它们的差即可【详解】解:作OCAB于C,如图,则AC=BC,OA=OB,A=B=(180-AOB)=3
8、0,在RtAOC中,OC=OA=9,AC=,AB=2AC=,又=,走便民路比走观赏路少走米,故选D【考点】本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题3、D【解析】【分析】根据直线和圆的位置关系判断方法,可得结论【详解】直线m与O公共点的个数为2个直线与圆相交d半径4故选D【考点】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设O的半径为r,圆心O到直线l的距离为d直线l和O相交dr直线l和O相切dr,直线l和O相离dr4、D【解析】【分析】连接OC、OA,利用圆周角定理得出AOC=60,再利用垂径定理得出AB即可【详解】连接
9、OC、OA,ABC=30,AOC=60,AB为弦,点C为的中点,OCAB,在RtOAE中,AE=,AB=,故选D【考点】此题考查圆周角定理,关键是利用圆周角定理得出AOC=605、A【解析】【详解】如图,连接OA,则在直角OMA中,根据勾股定理得到OA=点A与O的位置关系是:点A在O内 故选A 6、B【解析】【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72,即COD=72,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故CPD=,故选B.【考点】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.7、B【解析】【分析】根据题意可求出
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-635787.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
