2022-2023学年人教版九年级数学上册第二十四章圆定向攻克试题(详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 人教版 九年级 数学 上册 第二 十四 定向 攻克 试题 详解
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、 “圆材埋壁”是我国古代著名数学著作九章算术中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一
2、尺,问径几何?”用现在的数学语言表述是:如图所示,CD为O的直径,弦ABCD,垂足为E,CE为1寸,AB为10寸,求直径CD的长依题意,CD长为()A寸B13寸C25寸D26寸2、如图,已知在中,是直径,则下列结论不一定成立的是()ABCD到、的距离相等3、下列多边形中,内角和最大的是()ABCD4、下列语句,错误的是()A直径是弦B相等的圆心角所对的弧相等C弦的垂直平分线一定经过圆心D平分弧的半径垂直于弧所对的弦5、已知:如图,PA,PB分别与O相切于A,B点,C为O上一点,ACB65,则APB等于()A65B50C45D406、一个等腰直角三角形的内切圆与外接圆的半径之比为()ABCD7、
3、如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14D218、如图,是的内接三角形,是直径,则的长为( )A4BCD9、如图,螺母的外围可以看作是正六边形ABCDEF,已知这个正六边形的半径是2,则它的周长是()A6B12C12D2410、如图,点在上,则()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24,则正六边形的边长为_2、如图,将三角形AOC绕点O顺时针旋转120得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_
4、(结果保留)3、如图,四边形ABCD内接于O,A=125,则C的度数为_4、如图 1 是台湾某品牌手工蛋卷的外包装盒,其截面图如图 2 所示,盒子上方是一段圆弧(弧 MN ).D,E 为手提带的固定点, DE 与弧MN 所在的圆相切,DE=2.手提带自然下垂时,最低点为C,且呈抛物线形,抛物线与弧MN 交于点 F,G.若CDE 是等腰直角三角形,且点 C,F 到盒子底部 AB 的距离分别为 1, ,则弧MN 所在的圆的半径为_ 5、如图,在矩形 中,是边上一点,连接,将矩形沿翻折,使点落在边上点处,连接.在上取点,以点为圆心,长为半径作与相切于点.若,给出下列结论:是的中点;的半径是2; ;.
5、其中正确的是_.(填序号)三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,C与x轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E(1)求圆心C的坐标与抛物线的解析式;(2)判断直线AE与C的位置关系,并说明理由;(3)若点M,N是直线y轴上的两个动点(点M在点N的上方),且MN1,请直接写出的四边形EAMN周长的最小值2、在中,D为的中点,E,F分别为,上任意一点,连接,将线段绕点E顺时针旋转90得到线段,连接,(1)如图1,点E与点C重合,且的延长线过点B,若点P为的中点,连接,求的长;(2)如图2,的延长线交于点M
6、,点N在上,且,求证:;(3)如图3,F为线段上一动点,E为的中点,连接,H为直线上一动点,连接,将沿翻折至所在平面内,得到,连接,直接写出线段的长度的最小值3、如图,一根长的绳子,一端拴在柱子上,另一端拴着一只羊(羊只能在草地上活动),请画出羊的活动区域4、如图,已知四边形 ABCD 内接于O,且已知ADC=120;请仅用无刻度直尺作出一个30的圆周角要求:(1)保留作图痕迹,写出作法,写明答案;(2)证明你的作法的正确性5、如图,是的直径,点是上一点,点是延长线上一点,是的弦,(1)求证:直线是的切线;(2)若,求的半径;(3)若于点,点为上一点,连接,请找出,之间的关系,并证明-参考答案
7、-一、单选题1、D【解析】【分析】连结AO,根据垂径定理可得:,然后设O半径为R,则OER1再由勾股定理,即可求解【详解】解:连结AO, CD为直径,CDAB, 设O半径为R,则OER1RtAOE中,OA2AE2+OE2, R252+(R-1)2,R13,CD2R26(寸)故选:D【考点】本题主要考查了垂径定理,勾股定理,熟练掌握垂径定理是解题的关键2、A【解析】【分析】根据圆心角、弧、弦之间的关系即可得出答案【详解】在中,弦弦,则其所对圆心角相等,即,所对优弧和劣弧分别相等,所以有,故B项和C项结论正确,AO=DO=BO=CO(SSS)可得出点到弦,的距离相等,故D项结论正确;而由题意不能推
8、出,故A项结论错误故选:A【考点】此题主要考查圆的基本性质,解题的关键是熟知圆心角、弧、弦之间的关系3、D【解析】【分析】根据多边形内角和公式可直接进行排除选项【详解】解:A、是一个三角形,其内角和为180;B、是一个四边形,其内角和为360;C、是一个五边形,其内角和为540;D、是一个六边形,其内角和为720;内角和最大的是六边形;故选D【考点】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键4、B【解析】【分析】将每一句话进行分析和处理即可得出本题答案.【详解】A.直径是弦,正确.B.在同圆或等圆中,相等的圆心角所对的弧相等,相等的圆心角所对的弧相等,错误.C.弦的垂直平分
9、线一定经过圆心,正确.D.平分弧的半径垂直于弧所对的弦,正确.故答案选:B.【考点】本题考查了圆中弦、圆心角、弧度之间的关系,熟练掌握该知识点是本题解题的关键.5、B【解析】【分析】连接OA,OB根据圆周角定理和四边形内角和定理求解即可【详解】连接OA,OB,PA、PB切O于点A、B,PAOPBO90,由圆周角定理知,AOB2ACB130,APB360PAOPBOAOB360909013050故选:B【考点】本题考查了切线的性质、圆周角定理、以及四边形的内角和为360度6、D【解析】【分析】设等腰直角三角形的直角边是1,则其斜边是根据直角三角形的内切圆半径是两条直角边的和与斜边的差的一半,得其
10、内切圆半径是;其外接圆半径是斜边的一半,得其外接圆半径是所以它们的比为=【详解】解:设等腰直角三角形的直角边是1,则其斜边是;内切圆半径是,外接圆半径是,所以它们的比为=故选:D【考点】本题考查三角形的内切圆与外接圆的知识,解题的关键是熟记直角三角形外接圆的半径和内切圆的半径公式:直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半;直角三角形外接圆的半径是斜边的一半7、A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,ABC中,cosB=,sinC=,AC=5,cosB=,B=45,sinC=,AD=3,CD
11、=4,BD=3,则ABC的面积是:ADBC=3(3+4)=故选A【考点】此题主要考查了解直角三角形的知识,作出ADBC,进而得出相关线段的长度是解决问题的关键8、B【解析】【分析】连接BO,根据圆周角定理可得,再由圆内接三角形的性质可得OB垂直平分AC,再根据正弦的定义求解即可【详解】如图,连接OB,是的内接三角形,OB垂直平分AC,又,,又AD=8,AO=4,解得:,故答案选B【考点】本题主要考查了圆的垂径定理的应用,根据圆周角定理求角度是解题的关键9、C【解析】【分析】如图,先求解正六边形的中心角,再证明是等边三角形,从而可得答案【详解】解:如图,为正六边形的中心,为正六边形的半径,为等边
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-635830.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
