分享
分享赚钱 收藏 举报 版权申诉 / 29

类型2022-2023学年人教版八年级数学上册第十二章全等三角形专题攻克试卷(含答案详解版).docx

  • 上传人:a****
  • 文档编号:636183
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:29
  • 大小:528.68KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 人教版 八年 级数 上册 第十二 全等 三角形 专题 攻克 试卷 答案 详解
    资源描述:

    1、八年级数学上册第十二章全等三角形专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,是边上的高,平分,交于点,若,则的面积等于()A36B48C60D722、下列关于全等三角形的说法不正确

    2、的是A全等三角形的大小相等B两个等边三角形一定是全等三角形C全等三角形的形状相同D全等三角形的对应边相等3、已知图中的两个三角形全等,AD与CE是对应边,则A的对应角是( )ABCD4、如图,已知ABCDCB添加一个条件后,可得ABCDCB,则在下列条件中,不能添加的是()AACDBBABDCCADDABDDCA5、如图,在中,垂足分别为D,E,交于点H,已知,则的长是()A1BC2D6、如图,在ABC和DEF中,ABDE,ABDE,运用“SAS”判定ABCDEF,需补充的条件是()AACDFBADCBECFDACBDFE7、如图,要使,直接利用三角形全等的判定方法是AAASBSASCASAD

    3、SSS8、 “经过已知角一边上的一点作“个角等于已知角”的尺规作图过程如下:已知:如图(1),AOB和OA上一点C求作:一个角等于AOB,使它的顶点为C,一边为CA作法:如图(2),(1)在0A上取一点D(ODOC),以点O为圆心,OD长为半径画弧,交OB于点E;(2)以点C为圆心,OD长为半径画弧,交CA于点F,以点F为圆心,DE长为半径画弧,两弧交于点C;(3)作射线CC所以CCA就是所求作的角此作图的依据中不含有()A三边分别相等的两个三角形全等B全等三角形的对应角相等C两直线平行同位角相等D两点确定一条直线9、如图,B,C,E,F四点在一条直线上,下列条件能判定ABC与DEF全等的是(

    4、)AABDE,A=D,BE=CFBABDE,AB=DE,AC=DFCABDE,AC=DF,BE=CFDABDE,ACDF,A=D10、如图,与相交于点O,不添加辅助线,判定的依据是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,F是高AD和BE的交点,cm,则线段BF的长度为_2、如图,在ABC中,点D是AC的中点,分别以AB,BC为直角边向ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中ABMNBC90,连接MN,已知MN4,则BD_3、如图,在中,以点为圆心,任意长为半径作弧,分别交于和,再分别以点为圆心,大于二分之一为半径作弧,两

    5、弧交于点,连接并延长交于点,过点作于若,则的面积为_4、如图,已知ABCDBE,A36,B40,则AED的度数为 _5、如图是由九个边长为1的小正方形拼成的大正方形,图中12345的度数为_三、解答题(5小题,每小题10分,共计50分)1、中,过点作,连接,为平面内一动点(1)如图1,点在上,连接,过点作于点,为中点,连接并延长,交于点若,则 ;求证:(2)如图2,连接,过点作于点,且满足,连接,过点作于点,若,请求出线段的取值范围2、如图,在ABC中,ABBC,ABC60,线段AC与AD关于直线AP对称,E是线段BD与直线AP的交点(1)若DAE15,求证:ABD是等腰直角三角形;(2)连C

    6、E,求证:BEAE+CE3、如图,A=D=90,AC=DB,AC、DB相交于点O求证:OB=OC4、在ABC中,ACB90,ACBC,且ADMN于D,BEMN于E(1)直线MN绕点C旋转到图(1)的位置时,求证:DEAD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系(不写证明过程);(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系(不写证明过程)5、如图,已知在ABC中AB=AC,BAC=90,分别过B,C两点向过A的直线作垂线,垂足分别为E,F求证:EF=BE+C

    7、E-参考答案-一、单选题1、B【解析】【分析】作交于点,然后根据角平分线的性质,可以得到,再根据三角形的面积公式,即可求得的面积【详解】解:作交于点,是边上的高,平分,故选:B【考点】本题考查了三角形的面积和角平分线性质理解和掌握角的平分线的性质定理是解题的关键2、B【解析】【分析】根据全等三角形的定义与性质即可求解【详解】A、全等三角形的大小相等,说法正确,故A选项错误;B、两个等边三角形,三个角对应相等,但边长不一定相等,所以不一定是全等三角形,故B选项正确;C、全等三角形的形状相同,说法正确,故C选项错误;D、全等三角形的对应边相等,说法正确,故D选项错误故选B【考点】本题考查了全等三角

    8、形的定义与性质,能够完全重合的两个三角形叫做全等三角形,即形状相同、大小相等两个三角形叫做全等三角形;全等三角形的对应边相等,对应角相等3、A【解析】【分析】观察图形,AD与CE是对应边,根据对应边去找对应角【详解】观察图形知,AD与CE是对应边B与ACD是对应角又D与E是对应角A与BCE是对应角故选:A【考点】本题考查了全等三角形的性质,正确的识别图形是解题的关键4、A【解析】【分析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项【详解】解:ABCDCB,BCBC,A、添加ACDB,不能得ABCDCB,符合题意;B、添加ABDC,利用SAS可得ABCD

    9、CB,不符合题意;C、添加AD,利用AAS可得ABCDCB,不符合题意;D、添加ABDDCA,ACBDBC,利用ASA可得ABCDCB,不符合题意;故选:A【考点】本题主要考查三角形全等的判定,熟练掌握判定方法是解题的关键5、A【解析】【分析】利用“八字形”图形推出EAH=ECB,根据,EH=3,求出AE=4,证明AEHCEB,得到AE=CE=4,即可求出CH【详解】解:,CEB=,AHE=CHD,EAH=ECB,EH=3,AE=4,AEH=CEB,EAH=ECB,EH=BE,AEHCEB,AE=CE=4,CH=CE-EH=4-3=1,故选A【考点】此题考查了全等三角形的判定及性质,“八字形”

    10、图形的应用,熟记全等三角形的判定定理是解题的关键6、C【解析】【分析】证出ABCDEF,由SAS即可得出结论【详解】解:补充BECF,理由如下:ABDE,ABCDEF,若要利用SAS判定,B、D选项不符合要求,若A:AC=DF,构成的是SSA,不能证明三角形全等,A选项不符合要求,C选项:BE=CF,BECF,BCEF,在ABC和DEF中,ABCDEF(SAS),故选:C【考点】此题主要考查全等三角形的判定,解题的关键是熟知“SAS”的判定的特点7、B【解析】【分析】根据平行线性质得出ABD=CDB,再加上AB=DC,BD=DB,根据全等三角形的判定定理SAS即可推出ABDCDB,从而推出A=

    11、C,即可得出答案【详解】,在和中,故选B【考点】本题考查了平行线性质、全等三角形的判定与性质的应用,熟练掌握全等三角形的判定与性质定理是解题的关键.8、C【解析】【分析】根据题意知,作图依据有全等三角形的判定定理SSS,全等三角形的性质和两点确定一条直线,直接判断即可【详解】解:由题意可得:由全等三角形的判定定理SSS可以推知EODGCF,故A正确;结合该全等三角形的性质对应角相等,故B正确;作射线CG,利用两点确定一条直线,故D正确;故选:C【考点】本题考查作一个角等于已知角和三角形全等的判定与性质,解题关键是明确作图原理,准确进行判断9、A【解析】【分析】根据全等三角形的判定条件逐一判断即

    12、可【详解】解:A、,即在和中,故A符合题意;B、,再由,不可以利用SSA证明两个三角形全等,故B不符合题意;C、,再由,不可以利用SSA证明两个三角形全等,故C不符合题意;D、,再由,不可以利用AAA证明两个三角形全等,故D不符合题意;故选A【考点】本题主要考查了全等三角形的判定,熟知全等三角形的判定条件是解题的关键10、B【解析】【分析】根据,正好是两边一夹角,即可得出答案【详解】解:在ABO和DCO中,故B正确故选:B【考点】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键二、填空题1、8 cm【解析】【分析】先求,推导出,再求出,根据

    13、ASA证明,即可得出答案【详解】,在BFD和ACD中,(ASA),cm故答案为:8cm【考点】本题考查了全等三角形的性质和判定,全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等2、2【解析】【分析】延长BD到E,使DE=BD,连接AE,证明ADECDB(SAS),可得AE=CB,EAD=BCD,再根据ABM和BCN是等腰直角三角形,证明MBNBAE,可得MN=BE,进而可得BD与MN的数量关系即可求解【详解】解:如图,延长BD到E,使DE=BD,连接AE,点D是AC的中点,AD=CD,在ADE和CDB中,ADECDB(SAS),AE=CB,EAD=BCD,ABM和B

    14、CN是等腰直角三角形,AB=BM,CB=NB,ABM=CBN=90,BN=AE,又MBN+ABC=360-90-90=180,BCA+BAC+ABC=180,MBN=BCA+BAC=EAD+BAC=BAE,在MBN和BAE中,MBNBAE(SAS),MN=BE,BE=2BD,MN=2BD又MN=4,BD=2,故答案为:2【考点】本题考查了全等三角形的判定与性质、等腰直角三角形,解决本题的关键是掌握全等三角形的判定与性质3、5【解析】【分析】作GMAB于M,先利用基本作图得到AG平分BAC,再根据角平分线的性质得到GM=GH=2,然后根据三角形面积公式计算【详解】解:作GMAB于M,由作法得AG

    15、平分BAC,而GHAC,GMAB,GM=GH=2,,故答案为:5【考点】此题考查了角平分线的性质定理:角平分线上的点到这个角的两边的距离相等,还考查了角平分线的作图方法,正确理解题意得到AG平分BAC是解题的关键4、76或76度【解析】【分析】根据全等三角形的性质得到AD36,根据三角形的外角的性质即可得出答案【详解】解:ABCDBE,AD36,AED是BDE的外角,AEDB+D40+3676故答案为:76【考点】本题考查了全等三角形的性质及三角形外角的性质,掌握全等三角形的对应角相等是解题的关键5、225【解析】【分析】首先判定ABCAEF,ABDAEH,可得5=BCA,4=BDA,然后可得

    16、1+5=1+BCA=90,2+4=2+BDA=90,即可求得1+2+3+4+5的值【详解】解:如图所示:在ABC和AEF中,ABCAEF(SAS),5=BCA,1+5=1+BCA=90,在RtABD和RtAEH中,RtABDRtAEH(HL),4=BDA,2+4=2+BDA=90,3=45,1+2+3+4+5=90+90+45=225故答案为:225【考点】此题主要考查了全等三角形的判定和性质,关键是掌握全等三角形的性质:全等三角形对应角相等即可求解三、解答题1、(1)4, 见解析;(2)612【解析】【分析】(1)根据三角形的面积公式计算即可;先根据 AAS证得ABFBCM,得出BF=MC,

    17、AF=BM,再利用AAS证得AFDCHD,得出AF=CH,即可得出结论;(2)连接CM,先利用SAS得出 CBM,得出,再根据等底同高的三角形的面积相等得出,再利用三角形的面积公式得出EC的长,从而利用三角形的三边关系得出的取值范围;【详解】解:(1),AFB=BMC=FMC =90,ABF+BAF=90,ABF+CBM=90,BAF=CBM,ABFBCM,BF=MC,AF=BM,AFB=FMC =90,AF/CM,FAC=HCD,为中点,AD=CD,FDA=HDC,AFDCHD,AF=CH,BM=CH,BF=CMBF-BM=CM-CH(2)连接CM,ABC=90,BA=CBM, CBM,AB

    18、C+BAE=180,AE/BC,EC=9在ECM中,则9-3CM9+3,6CM12,612,【考点】本题考查了全等三角形的判定和性质以及三角形的三边关系,灵活运用全等三角形的判定是解题的关键2、(1)见解析;(2)见解析【解析】【分析】(1)首先根据题意确定出ABC是等边三角形,然后根据等边三角形的性质推出BAC60,再根据线段AC与AD关于直线AP对称,以及DAE15,推出BAD90,即可得出结论;(2)利用“截长补短”的方法在BE上取点F,使BFCE,连接AF,根据题目条件推出ABFACE,得出AFAE,再进一步推出AEF60,可得到AFE是等边三角形,则得到AFFE,从而推出结论即可【详

    19、解】证明:(1)在ABC中,ABBC,ABC60,ABC是等边三角形,ACABBC,BACABCACB60,线段AC与AD关于直线AP对称,CAEDAE15,ADAC,BAEBAC+CAE75,BAD90,ABACAD,ABD是等腰直角三角形;(2)在BE上取点F,使BFCE,连接AF,线段AC与AD关于直线AP对称,ACEADE,ADAC,ADACAB,ADBABD=ACE,在ABF与ACE中,ABFACE(SAS),AFAE,ADAB,DABD,又CAEDAE,在AFE中,AFAE,AEF60,AFE是等边三角形,AFFE,BEBF+FECE+AE【考点】本题考查全等三角形的判定与性质,以

    20、及等边三角形的判定与性质等,掌握等边三角形的判定与性质,以及全等三角形的常见辅助线的构造方法是解题关键3、证明见解析.【解析】【分析】因为A=D=90,AC=BD,BC=BC,知RtBACRtCDB(HL),所以ACB=DBC,故OB=OC【详解】证明:在RtABC和RtDCB中 ,RtABCRtDCB(HL),OBC=OCB,BO=CO【考点】此题主要考查了全等三角形的判定,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具4、 (1)证明见详解(2)DE+BE=AD理由见详解(3)DE=BE-AD(或AD=BE-DE,BE=AD+DE等)理由见详解.【解析】【分析】(1)根据

    21、题意由垂直得ADC=BEC=90,由同角的余角相等得:DAC=BCE,因此根据AAS可以证明ADCCEB,结合全等三角形的对应边相等证得结论;(2)由题意根据全等三角形的判定定理AAS推知ACDCBE,然后由全等三角形的对应边相等、图形中线段间的和差关系以及等量代换证得DE+BE=AD;(3)由题意可知DE、AD、BE具有的等量关系为:DE=BE-AD(或AD=BE-DE,BE=AD+DE等)证明的方法与(2)相同(1)证明:如图1,ADMN,BEMN,ADC=BEC=90,DAC+ACD=90,ACB=90,ACD+BCE=90,DAC=BCE,在ADC和CEB中,ADCCEB;DC=BE,

    22、AD=EC,DE=DC+EC,DE=BE+AD(2)解:DE+BE=AD理由如下:如图2,ACB=90,ACD+BCE=90又ADMN于点D,ACD+CAD=90,CAD=BCE在ACD和CBE中,ACDCBE(AAS),CD=BE,AD=CE,DE+BE=DE+CD=EC=AD,即DE+BE=AD(3)解:DE=BE-AD(或AD=BE-DE,BE=AD+DE等)理由如下:如图3,易证得ADCCEB,AD=CE,DC=BE,DE=CD-CE=BE-AD,即DE=BE-AD【考点】本题属于几何变换综合题,考查等腰直角三角形和全等三角形的性质和判定,熟练掌握全等三角形的四种判定方法是关键:SSS、SAS、AAS、ASA;在证明线段的和与差时,利用全等三角形将线段转化到同一条直线上得出结论5、见解析【解析】【分析】证明BEAAFC,然后利用对应边相等就可以证明题目的结论【详解】证明:BEEA,CFAF,BAC=BEA=CFE=90,EAB+CAF=90,EBA+EAB=90,CAF=EBA,在BEA和AFC中,BEAAFC()EA=FC,BE=AFEF=BE+CF【考点】此题主要考查了全等三角形的性质与判定,利用它们解决问题,经常用全等来证线段和的问题

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版八年级数学上册第十二章全等三角形专题攻克试卷(含答案详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-636183.html
    相关资源 更多
  • 九年级化学上册6.1金刚石石墨和C60习题1新人教版.docx九年级化学上册6.1金刚石石墨和C60习题1新人教版.docx
  • 九年级化学上册 绪言 化学使世界变得更加绚丽多彩学案(无答案)(新版)新人教版.docx九年级化学上册 绪言 化学使世界变得更加绚丽多彩学案(无答案)(新版)新人教版.docx
  • 九年级化学上册 第四单元 课题4《化学式与化合价》练习(无答案) 新人教版.docx九年级化学上册 第四单元 课题4《化学式与化合价》练习(无答案) 新人教版.docx
  • 九年级化学上册 第四单元 课题4 化学式与化合价导学案(无答案)(新版)新人教版.docx九年级化学上册 第四单元 课题4 化学式与化合价导学案(无答案)(新版)新人教版.docx
  • 九年级化学上册 第四单元 课题3《离子》练习(无答案) 新人教版.docx九年级化学上册 第四单元 课题3《离子》练习(无答案) 新人教版.docx
  • 九年级化学上册 第四单元 课题3 水的组成导学案(无答案)(新版)新人教版.docx九年级化学上册 第四单元 课题3 水的组成导学案(无答案)(新版)新人教版.docx
  • 九年级化学上册 第四单元 课题2《元素》练习(无答案) 新人教版.docx九年级化学上册 第四单元 课题2《元素》练习(无答案) 新人教版.docx
  • 九年级化学上册 第四单元 课题1《原子的构成》练习(无答案) 新人教版.docx九年级化学上册 第四单元 课题1《原子的构成》练习(无答案) 新人教版.docx
  • 九年级化学上册 第四单元 自然界的水教案 (新版)新人教版.docx九年级化学上册 第四单元 自然界的水教案 (新版)新人教版.docx
  • 九年级化学上册 第四单元 自然界的水 课题1 爱护水资源练习2 (新版)新人教版.docx九年级化学上册 第四单元 自然界的水 课题1 爱护水资源练习2 (新版)新人教版.docx
  • 九年级化学上册 第六单元 课题3《二氧化碳和一氧化碳》练习(无答案) 新人教版.docx九年级化学上册 第六单元 课题3《二氧化碳和一氧化碳》练习(无答案) 新人教版.docx
  • 九年级化学上册 第六单元 课题2《二氧化碳制取的研究》练习(无答案) 新人教版.docx九年级化学上册 第六单元 课题2《二氧化碳制取的研究》练习(无答案) 新人教版.docx
  • 九年级化学上册 第六单元 碳和碳的氧化物 实验活动2 二氧化碳的实验室制取与性质练习 (新版)新人教版.docx九年级化学上册 第六单元 碳和碳的氧化物 实验活动2 二氧化碳的实验室制取与性质练习 (新版)新人教版.docx
  • 九年级化学上册 第五单元 课题3《利用化学方程式的简单计算》练习(无答案) 新人教版.docx九年级化学上册 第五单元 课题3《利用化学方程式的简单计算》练习(无答案) 新人教版.docx
  • 九年级化学上册 第五单元 课题1《质量守恒定律》练习(无答案) 新人教版.docx九年级化学上册 第五单元 课题1《质量守恒定律》练习(无答案) 新人教版.docx
  • 九年级化学上册 第五单元 化学方程式 课题1 质量守恒定律练习2 (新版)新人教版.docx九年级化学上册 第五单元 化学方程式 课题1 质量守恒定律练习2 (新版)新人教版.docx
  • 九年级化学上册 第五单元 化学方程式 课题1 质量守恒定律练习1 (新版)新人教版.docx九年级化学上册 第五单元 化学方程式 课题1 质量守恒定律练习1 (新版)新人教版.docx
  • 九年级化学上册 第二单元 课题3《制取氧气》练习(无答案) 新人教版.docx九年级化学上册 第二单元 课题3《制取氧气》练习(无答案) 新人教版.docx
  • 九年级化学上册 第二单元 课题3 制取氧气导学案(无答案)(新版)新人教版.docx九年级化学上册 第二单元 课题3 制取氧气导学案(无答案)(新版)新人教版.docx
  • 九年级化学上册 第二单元 课题2《氧气》练习(无答案) 新人教版.docx九年级化学上册 第二单元 课题2《氧气》练习(无答案) 新人教版.docx
  • 九年级化学上册 第二单元 课题1《空气》练习(无答案) 新人教版.docx九年级化学上册 第二单元 课题1《空气》练习(无答案) 新人教版.docx
  • 九年级化学上册 第二单元 课题1 空气导学案(无答案)(新版)新人教版.docx九年级化学上册 第二单元 课题1 空气导学案(无答案)(新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气教案 (新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气教案 (新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气复习学案(无答案)(新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气复习学案(无答案)(新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气 课题2 氧气练习4 (新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气 课题2 氧气练习4 (新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气 课题2 氧气练习3 (新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气 课题2 氧气练习3 (新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气 课题2 氧气练习 (新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气 课题2 氧气练习 (新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气 课题1 空气习题4 (新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气 课题1 空气习题4 (新版)新人教版.docx
  • 九年级化学上册 第二单元 我们周围的空气 课题1 空气习题3 (新版)新人教版.docx九年级化学上册 第二单元 我们周围的空气 课题1 空气习题3 (新版)新人教版.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1