2022-2023学年度京改版八年级数学上册第十一章实数和二次根式定向练习试题(解析卷).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年度 改版 八年 级数 上册 第十一 实数 二次 根式 定向 练习 试题 解析
- 资源描述:
-
1、八年级数学上册第十一章实数和二次根式定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、使式子在实数范围内有意义的整数x有()A5个B3个C4个D2个2、若,则x的值等于()A4BC2D3、下列计算:
2、,其中结果正确的个数为()A1B2C3D44、若代数式在实数范围内有意义,则x的取值范围为()Ax0Bx0Cx0Dx0且x15、下列二次根式中,是最简二次根式的是ABCD6、在四个实数,0,中,最小的实数是()AB0CD7、下列说法错误的是()A中的可以是正数、负数、零B中的不可能是负数C数的平方根一定有两个,它们互为相反数D数的立方根只有一个8、下列运算正确的是().ABCD9、已知 , , ,则下列大小关系正确的是()AabcBcbaCbacDacb10、把根号外的因式适当变形后移到根号内,得()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把的根号外因式
3、移到根号内得_2、_3、若将三个数,表示在数轴上,则被如图所示的墨迹覆盖的数是_.4、64的立方根是 5、若x3是4的平方根,则x=_三、解答题(5小题,每小题10分,共计50分)1、计算:+()2+|3|2、化简:(1);(2);(3);(4)3、我们知道,任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零由此可得:如果,其中m、n为有理数,x为无理数,那么m=0且n=0(1)如果,其中a、b为有理数,那么a= ,b= ;(2)如果,其中a、b为有理数,求的平方根;(3)若x,y是有理数,满足,求的算术平方根4、若和互为相反数,求的值5、
4、计算:|0.771|-参考答案-一、单选题1、C【解析】【详解】式子在实数范围内有意义 解得:,又要取整数值,的值为:-2、-1、0、1.即符合条件的的值有4个.故选C.2、C【解析】【分析】先化简、合并等号左边的二次根式,再将系数化为,继而两边平方,进一步求解可得【详解】解:原方程化为,合并,得,即,故选:C【考点】本题主要考查二次根式的性质与化简,二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并3、D【解析】【分析】根据二次根式的运算法则即可进行判断【详解】,正确;正确;正确;,正确,故选D【考点】此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:;4、
5、D【解析】【详解】解:根据分式有意义的条件和二次根式有意义的条件,可知x-10,x0,解得x0且x1.故选D.5、B【解析】【分析】根据最简二次根式的定义对各选项分析判断利用排除法求解【详解】A、不是最简二次根式,错误,不符合题意;B、是最简二次根式,正确,符合题意;C、不是最简二次根式,错误,不符合题意;D、不是最简二次根式,错误,不符合题意,故选B【考点】本题考查了最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式6、A【解析】【分析】根据实数比较大小的方法直接求解即可【详解】解:,四个实数,0,中,最小的实数是,故选:A【考点】本题考查
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-639281.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
