分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022-2023学年度人教版八年级数学上册第十三章轴对称定向测评试卷(解析版).docx

  • 上传人:a****
  • 文档编号:641762
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:25
  • 大小:754.58KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年 度人 八年 级数 上册 第十三 轴对称 定向 测评 试卷 解析
    资源描述:

    1、人教版八年级数学上册第十三章轴对称定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,在33的正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称

    2、图形的情况有()A6种B5种C4种D2种2、对于问题:如图1,已知AOB,只用直尺和圆规判断AOB是否为直角?小意同学的方法如图2:在OA、OB上分别取C、D,以点C为圆心,CD长为半径画弧,交OB的反向延长线于点E,若测量得OE=OD,则AOB=90.则小意同学判断的依据是()A等角对等边B线段中垂线上的点到线段两段距离相等C垂线段最短D等腰三角形“三线合一”3、下列黑体字中,属于轴对称图形的是()A善B勤C健D朴4、如图,已知钝角ABC,依下列步骤尺规作图,并保留作图痕迹步骤1以C为圆心,CA为半径画弧;步骤2以B为圆心,BA为半径画弧,交弧于点D;步骤3连接AD,交BC延长线于点H下列叙

    3、述正确的是()ABH垂直平分线段ADBAC平分BADCSABC=BCAHDAB=AD5、如图,等边的顶点,规定把等边“先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,顶点C的坐标为()ABCD6、已知点与点关于轴对称,则点的坐标为()ABCD7、等腰三角形两边长为3,6,则第三边的长是()A3B6CD3或68、如图是44的正方形网格,其中已有3个小方格涂成了黑色现在要从其余13个白色小方格中选出一个也涂成黑色,与原来3个黑色方格组成的图形成为轴对称图形,则符合要求的白色小正方格有()A1个B2个C3个D4个9、如图,RtACB中,ACB90,ABC的角平分线AD、BE

    4、相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB135;BFBA;PHPD;连接CP,CP平分ACB,其中正确的是()ABCD10、如图,在的正方形网格中有两个格点A、B,连接,在网格中再找一个格点C,使得是等腰直角三角形,满足条件的格点C的个数是()A2B3C4D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把两个同样大小含角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点,且另外三个锐角顶点在同一直线上若,则_2、如图,在中,点在延长线上,于点,交于点,若,则的长度为_3、如图,为内部一条射线

    5、,点为射线上一点,点分别为边上动点,则周长的最小值为_4、在ABC中,ACB90,A40,D为AB边上一点,若ACD是等腰三角形,则BCD的度数为_5、已知AOB60,OC是AOB的平分线,点D为OC上一点,过D作直线DEOA,垂足为点E,且直线DE交OB于点F,如图所示若DE2,则DF_三、解答题(5小题,每小题10分,共计50分)1、已知,平分,点分别在上(1)如图1,若于点,于点利用等腰三角形“三线合一”,将补成一个等边三角形,可得的数量关系为_请问:是否等于呢?如果是,请予以证明(2)如图2,若,则(1)中的结论是否仍然成立?若成立,请予以证明;若不成立,请说明理由2、如图,已知AOB

    6、20,点C是AO上一点,在射线OB上求作一点F,使得CFO40(尺规作图,保留作图痕迹,并说明理由)3、如图,在正方形网格上的一个ABC,且每个小正方形的边长为1(其中点A,B,C均在网格上)(1)作ABC关于直线MN的轴对称图形ABC;(2)在MN上画出点P,使得PA+PC最小;(3)求出ABC的面积4、图、图均是66的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,ABC的顶点均在格点上,只用无刻度的直尺,在给定的网格中,分别按下列要求画图(1)在图中的线段AB上找一点D,连结CD,使BCD BDC(2)在图中的线段AC上找一点E,连结BE,使EAB EBA5、如图,在平

    7、面直角坐标系中,的顶点, ,均在正方形网格的格点上.(1)画出关于x轴的对称图形;(2)将,沿轴方向向左平移3个单位、再沿轴向下平移1个单位后得到,写出,顶点的坐标.-参考答案-一、单选题1、C【解析】【分析】轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,据此解答即可【详解】如图所示,所标数字1,2,3,4都符合要求,一共有4种方法.故选C【考点】本题重点考查了利用轴对称设计图案,需熟练掌握轴对称图形的定义,应该多加练习2、B【解析】【分析】由垂直平分线的判定定理,即可得到答案【详解】解:根据题意,CD=CE,OE=OD,AO是线段DE的垂直平分线,

    8、AOB=90;则小意同学判断的依据是:线段中垂线上的点到线段两段距离相等;故选:B【考点】本题考查了垂直平分线的判定定理,解题的关键是熟练掌握垂直平分线的判定定理进行判断3、A【解析】【分析】轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据轴对称图形的定义可得答案.【详解】解:由轴对称图形的定义可得:善是轴对称图形,勤,健,朴三个字都不是轴对称图形,故符合题意,不符合题意,故选:【考点】本题考查的是轴对称图形的含义,轴对称图形的识别,掌握定义,确定对称轴是解题的关键.4、A【解析】【详解】解:A如图连接CD、BD,CA=CD,BA=BD,点C、点B

    9、在线段AD的垂直平分线上,直线BC是线段AD的垂直平分线,故A正确,符合题意;B CA不一定平分BDA, 故B错误,不符合题意;C应该是SABC=BCAH,故C错误,不符合题意;D根据条件AB不一定等于AD, 故D错误,不符合题意故选A5、D【解析】【分析】先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标【详解】ABC是等边三角形AB=3-1=2点C到x轴的距离为1+,横坐标为2C(2,)由题意可得:第1次变换后点C的坐标

    10、变为(2-1,),即(1,),第2次变换后点C的坐标变为(2-2,),即(0,)第3次变换后点C的坐标变为(2-3,),即(-1,)第n次变换后点C的坐标变为(2-n,)(n为奇数)或(2-n,)(n为偶数),连续经过2021次变换后,等边的顶点的坐标为(-2019,),故选:D【考点】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键6、B【解析】【分析】根据关于轴对称的性质:横坐标相等,纵坐标互为相反数,即可得解.【详解】由题意,得与点关于轴对称点的坐标是,故选:B.【考点】此题主要考查关于轴对称的点坐标的求解,熟练掌握,即可解题.7、B【解析】【分析】

    11、题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】由等腰三角形的概念,得第三边的长可能为3或6,当第三边是3时,而3+3=6,所以应舍去;则第三边长为6故选B【考点】此题考查等腰三角形的性质和三角形的三边关系解题关键在于已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答8、C【解析】【分析】根据轴对称的性质可直接进行求解【详解】解:如图所示:,共3个,故选:C【考点】本题主要考查轴对称图形的性质,熟练掌握轴对称的性质是解题的关键9、D【解析】【分析】根据三角形内角

    12、和定理以及角平分线定义判断;根据全等三角形的判定和性质判断;根据角平分线的判定与性质判断【详解】解:在ABC中,ACB=90,BAC+ABC=90,又AD、BE分别平分BAC、ABC,BAD+ABE=(BAC+ABC)=(180-ACB)=(180-90)=45,APB=135,故正确BPD=45,又PFAD,FPB=90+45=135,APB=FPB,又ABP=FBP,BP=BP,ABPFBP(ASA),BAP=BFP,AB=FB,PA=PF,故正确在APH和FPD中,APH=FPD=90,PAH=BAP=BFP,PA=PF,APHFPD(ASA),PH=PD,故正确连接CP,如下图所示:A

    13、BC的角平分线AD、BE相交于点P,点P到AB、AC的距离相等,点P到AB、BC的距离相等,点P到BC、AC的距离相等,点P在ACB的平分线上,CP平分ACB,故正确,综上所述,均正确,故选:D【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理掌握相关性质是解题的关键10、B【解析】【分析】根据题意,结合图形,分两种情况讨论:AB为等腰直角ABC底边;AB为等腰直角ABC其中的一条腰【详解】解:如图:分情况讨论:AB为等腰直角ABC底边时,符合条件的C点有0个;AB为等腰直角ABC其中的一条腰时,符合条件的C点有3个故共有3个点,故选:B【考点】本题考查了等腰三角形

    14、的判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想二、填空题1、【解析】【分析】如图,先利用等腰直角三角形的性质求出 ,再利用勾股定理 求出 DF,即可得出结论【详解】如图,过点作于,在中,两个同样大小的含角的三角尺,在中,根据勾股定理得,故答案为【考点】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题 的关键2、4【解析】【分析】根据等边对等角得出B=C,再根据EPBC,得出C+E=90,B+BFP=90,从而得出E=BFP,再根据对顶角相等得出E=AFE,最后根据等角对等边即可得出答案【详解】证明:在ABC中,AB=AC,

    15、B=C,EPBC,C+E=90,B+BFP=90,E=BFP,又BFP=AFE,E=AFE,AF=AE=3,AEF是等腰三角形又CE=10,CA=AB=7,BF=AB-AF=7-3=4,故答案为:4【考点】本题考查了等腰三角形的判定和性质,解题的关键是证明E=AFE,注意等边对等角,以及等角对等边的使用3、6【解析】【分析】作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2,与OA的交点即为点M,与OB的交点即为点N,则此时M、N符合题意,求出线段P1P2的长即可【详解】解:作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2与OA的交点即为点M,与OB的交点即为

    16、点N,PMN的最小周长为PMMNPNP1MMNP2NP1P2,即为线段P1P2的长,连结OP1、OP2,则OP1OP2OP6,又P1OP22AOB60,OP1P2是等边三角形,P1P2OP16,即PMN的周长的最小值是6故答案是:6【考点】本题考查了等边三角形的性质和判定,轴对称最短路线问题的应用,关键是确定M、N的位置4、20或50【解析】【分析】分以下两种情况求解:当AC=AD时,当CD=AD时,先求出ACD的度数,然后即可得出BCD的度数【详解】解:如图1,当ACAD时,ACDADC(18040)70,BCD90ACD20;如图2,当CDAD时,ACDA40,BCD90ACD50,综上可

    17、知BCD的度数为20或50,故答案为:20或50【考点】本题考查了等腰三角形的性质以及三角形的内角和,解题的关键是根据题意画出图形,并运用分类讨论的思想求解5、4【解析】【分析】过点D作DMOB,垂足为M,则DM=DE=2,在RtOEF中,利用三角形内角和定理可求出DFM=30,在RtDMF中,由30角所对的直角边等于斜边的一半可求出DF的长,此题得解【详解】过点D作DMOB,垂足为M,如图所示OC是AOB的平分线,DMDE2在RtOEF中,OEF90,EOF60,OFE30,即DFM30在RtDMF中,DMF90,DFM30,DF2DM4故答案为4【考点】本题考查了角平分线的性质、三角形内角

    18、和定理以及含30度角的直角三角形,利用角平分线的性质及30角所对的直角边等于斜边的一半,求出DF的长是解题的关键三、解答题1、(1)(或),理由见解析;,理由见解析;(2)仍成立,理由见解析【解析】【分析】(1)由题意利用角平分线的性质以及含角的直角三角形性质进行分析即可;根据题意利用的结论进行等量代换求解即可;(2)根据题意过点分别作的垂线,垂足分别为,进而利用全等三角形判定得出,以此进行分析即可【详解】解:(1)(或)平分,又,利用等腰三角形“三线合一”,将补成一个等边三角形,可知证明:由知,同理,平分,又,,(2)仍成立证明:过点分别作的垂线,垂足分别为平分,又由(1)中知【考点】本题考

    19、查等腰三角形性质以及全等三角形判定,熟练掌握角平分线的性质以及含角的直角三角形性质和全等三角形判定定理是解题的关键2、见解析【解析】【分析】先作OC的垂直平分线交OB于D,再以C点为圆心,CD为半径画弧交OB于F,则DODC,CDCF,然后根据等腰三角形的性质可判断CFO40【详解】解:如图,点F为所作理由如下:点D为OC的垂直平分线与OB的交点,DODC,DCODOC20,CDFDCO+DOC40,CFCD,CFDCDF40,即CFO40【考点】本题考查基本作图-作线段的垂直平分线、作图-作线段、线段垂直平分线的性质、等腰三角形的性质、三角形的外角性质,熟练掌握基本作图的步骤和相关知识的性质

    20、,掌握转化的思想方法是解答的关键3、(1)见详解;(2)见详解;(3) 【解析】【分析】(1)根据题意,可以画出所求的ABC;(2)根据最短路线的作法,可以画出点P,使得PA+PC最小;(3)利用分割法求面积即可【详解】解:(1)如图,ABC即为所求;(2)如图,连接AC,交MN于点P,则P即为所求;(3)【考点】本题考查作图-轴对称变换,三角形的面积,轴对称最短问题等知识,解题关键是熟练掌握基本知识,属于中考常考题型4、(1)见解析;(2)见解析【解析】【分析】(1)根据等边对等角,在AB上取一点D使BD=BC=3,连接CD即可;(2)线段AB的垂直平分线与AC的交点E即为所求【详解】(1)

    21、如图所示,即为所求,(2)如图所示,即为所求,【考点】本题考查了作图-应用与设计作图,等腰三角形的性质,线段的垂直平分线的性质等知识,熟练运用等腰三角形的性质,线段垂直平分线的性质是解题的关键5、(1)作图见解析;(2)作图见解析A2(3,2),B2(0,3),C2(2,5)【解析】【分析】(1)关于x轴的两点横坐标相同,纵坐标互为相反数,分别画出各点,然后顺次进行连接得出图形;(2)根据平移的法则画出图形,得出各点的坐标【详解】解:(1)、如图所示:A1B1C1,即为所求;(2)、如图所示:A2B2C2,即为所求,点A2(3,2),B2(0,3),C2(2,5)【考点】本题考查了利用轴对称变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度人教版八年级数学上册第十三章轴对称定向测评试卷(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-641762.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1