2022-2023学年度北师大版八年级数学上册第一章勾股定理定向测试试题(含答案解析版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年度 北师大 八年 级数 上册 第一章 勾股定理 定向 测试 试题 答案 解析
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在22的正方形网格中有9个格点,已经取定点A和B,在余下的点中任取一点C,使ABC为直角三角形的概率是()
2、ABCD2、在ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A10B8C6或10D8或103、若直角三角形的三边长分别为2,4,x,则x的可能值有()A1个B2个C3个D4个4、如图,已知点E在正方形ABCD内,满足AEB=90,AE=6,BE=8,则阴影部分的面积是()A48B60C76D805、我国古代数学著作九章算术中有这样一个问题:“今有方池一丈,葭生其中央,出水一 尺,引葭赴岸,适与岸齐水深、葭长各几何? ”其大意是:如图,有一个水池,水面是 一个边长为 10 尺 (丈、尺是长度单位,1 丈10 尺) 的正方形,在水池正中央有一根芦苇, 它高出水面 1 尺
3、如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面水 的深度与这根芦苇的长度分别是多少?若设这跟芦苇的长度为 x 尺,根据题意,所列方程正 确的是()A102(x1)2x2B102(x1)2 (x1)2C52(x1)2x2D52(x1)2 (x1)26、在ABC中,A,B,C的对边分别记为a,b,c,下列结论中不正确的是()A如果AB=C,那么ABC是直角三角形B如果a2=b2c2,那么ABC是直角三角形,且C=90C如果ABC=132,那么ABC是直角三角形D如果a2b2c2=91625,那么ABC是直角三角形7、若a,b为直角三角形的两直角边,c为斜边,下列选项中不能用来证明勾股
4、定理的是()ABCD8、如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在外面的长为hcm,则h的取值范围是()A0h11B11h12Ch12D0h129、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m,当它把绳子的下端拉开4 m后,发现下端刚好接触地面,则旗杆的高为()A7 mB7.5 mC8 mD9 m10、如图,长方形中,将此长方形折叠,使点与点重合,折痕为,则的长为()A12B8C10D13第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在RtABC中,C=90,且ACBC=17,AB=100米,则AC
5、=_米2、在一棵树的5米高B处有两个猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树10米)的池塘边另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_米.3、如图,在网格中,每个小正方形的边长均为1点A、B,C都在格点上,若BD是ABC的高,则BD的长为_4、如图,在中,于点DE为线段BD上一点,连结CE,将边BC沿CE折叠,使点B的对称点落在CD的延长线上若,则的面积为_5、已知RtABC中,C90,ab14cm,c10cm,则RtABC的面积等于_cm2三、解答题(5小题,每小题10分,共计50分)1、做4个全等的直角三角形,设它们的两条直角边分别
6、为a,b,斜边为c,再做一个边长为c的正方形,把它们按如图的方式拼成正方形,请用这个图证明勾股定理2、如图,在笔直的铁路上A、B两点相距25km,C、D为两村庄,于A,于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求E应建在距A多远处?3、某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方法,如图,已知B是CD的中点,E是BA延长线上的一点,且CED90,测得AE16.6海里,DE60海里,CE80海里(1)求小岛两端A,B的距离(2)过点C作CFAB交AB的延长线于点F,求值4、阅读下面材料:小明遇到这样一个问题:MBN30,点A为射线BM上一点,且A
7、B4,点C为射线BN上动点,连接AC,以AC为边在AC右侧作等边三角形ACD,连接BD当ACBN时,求BD的长小明发现:以AB为边在左侧作等边三角形ABE,连接CE,能得到一对全等的三角形,再利用EBC90,从而将问题解决(如图1)请回答:(1)在图1中,小明得到的全等三角形是 ;BD的长为 (2)动点C在射线BN上运动,当运动到AC时,求BD的长;(3)动点C在射线BN上运动,求ABD周长最小值5、如图,在ABC和DEB中,ACBE,C90,ABDE,点D为BC的中点, (1)求证:ABCDEB (2)连结AE,若BC4,直接写出AE的长-参考答案-一、单选题1、C【解析】【分析】找到可以组
8、成直角三角形的点,根据概率公式解答即可【详解】解:如图,均可与点和组成直角三角形,故选:C【考点】本题考查了概率公式,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)2、C【解析】【详解】分两种情况:在图中,由勾股定理,得;BCBDCD8210.在图中,由勾股定理,得;BCBDCD826.故选C.3、B【解析】【详解】分析:x可为斜边也可为直角边,因此解本题时要对x的取值进行讨论解答:解:当x为斜边时,x2=22+42=20,所以x=2;当4为斜边时,x2=16-4=12,x=2故选B点评:本题考查了勾股定理的应用,注意要分两种情况讨论4
9、、C【解析】【详解】解:AEB=90,AE=6,BE=8,AB=S阴影部分=S正方形ABCD-SRtABE=102-=100-24=76.故选:C.5、C【解析】【分析】设这跟芦苇的长度为 x 尺,根据勾股定理,即可求解【详解】解:设这跟芦苇的长度为 x 尺,根据题意得:52(x1)2 x2故选:C【考点】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键6、B【解析】【分析】根据勾股定理的逆定理、三角形内角和定理、直角三角形定义即可【详解】解:A、A-B=C,ABC,ABC=180,A=90,ABC是直角三角形,此选项正确;B、如果a2=b2-c2,a2+c2=b2,AB
10、C是直角三角形且B=90,此选项不正确;C、如果A:B:C=1:3:2,设A=x,则B=3x,C=2x,则x+3x+2x=180,解得:x=30,则3x=90,ABC是直角三角形,此选项正确;D、如果a2:b2:c2=9:16:25,则a2+b2=c2,ABC是直角三角形,此选项正确;故选:B【考点】本题考查了三角形内角和,勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形7、A【解析】【分析】由题意根据图形的面积得出的关系,即可证明勾股定理,分别分析即可得出答案【详解】解:A、不能利用图形面积证明勾股定理;B、根据面积得到;C、根据面积得到,整理
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-643350.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
