分享
分享赚钱 收藏 举报 版权申诉 / 27

类型2022-2023学年解析卷人教版九年级数学上册期中定向测评试题 卷(Ⅰ)(含答案详解).docx

  • 上传人:a****
  • 文档编号:647332
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:27
  • 大小:552.25KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年解析卷人教版九年级数学上册期中定向测评试题 卷含答案详解 2022 2023 学年 解析 卷人教版 九年级 数学 上册 期中 定向 测评 试题 答案 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中定向测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、一次函数与二次函数在同一坐标系中的图象大致为( )ABCD2、在下

    2、列图形中,既是轴对称图形,又是中心对称图形的是()A等边三角形B直角三角形C正五边形D矩形3、已知ABC为等腰三角形,若BC6,且AB,AC为方程x28x+m0两根,则m的值等于()A12B16C12或16D12或164、如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是()A3B4C4.8D55、抛物线y3(x2)2+5的顶点坐标是()A(2,5)B(2,5)C(2,5)D(2,5)二、多选题(5小题,每小题4分,共计20分)1、在图

    3、形旋转中,下列说法正确的是()A在图形上的每一点到旋转中心的距离相等B图形上每一点转动的角度相同C图形上可能存在不动的点D图形上任意两点的连线与其对应两点的连线长度相等2、下列关于x的一元二次方程中,没有两个不相等的实数根的方程是()ABCD3、下列方程不适合用因式方程解法解的是()Ax23x+2=0B2x2=x+4C(x1)(x+2)=70Dx211x10=04、对于二次函数y=+2x下列结论中正确的个数为( )A它的对称轴是直线x=1 线 封 密 内 号学级年名姓 线 封 密 外 B设=+2,=+2,则当时,有C它的图象与x轴的两个交点是(0,0)和(2,0)D当0x2时,y05、下列方程

    4、中,是一元二次方程的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、一元二次方程的解为_2、已知函数y的图象如图所示,若直线ykx3与该图象有公共点,则k的最大值与最小值的和为 _3、已知方程的一根为,则方程的另一根为_4、九章算术是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多尺,门的对角线长尺,那么门的高和宽各是多少?如果设门的宽为尺,根据题意,那么可列方程_5、已知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,若新图象与直线有三个不同的公

    5、共点,则m的值为_四、解答题(5小题,每小题8分,共计40分)1、已知抛物线过点(1)求抛物线的解析式;(2)点A在直线上且在第一象限内,过A作轴于B,以为斜边在其左侧作等腰直角若A与Q重合,求C到抛物线对称轴的距离;若C落在抛物线上,求C的坐标2、已知关于x的方程x2+(m2)x2m0(1)求证:不论m取何值,此方程总有实数根;(2)若m为整数,且方程的一个根小于2,请写出一个满足条件的m的值3、如图,在平面直角坐标系中,ABC的BC边与x轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO2AO 线 封 密 内 号学级年名姓 线 封 密 外 (1)求直线

    6、AC的解析式;(2)若P为直线AC上一个动点,过点P作PDx轴,垂足为D,PD与直线AB交于点Q,设CPQ的面积为S(),点P的横坐标为a,求S与a的函数关系式;(3)点M的坐标为,当MAB为直角三角形时,直接写出m的值4、顶点为D的抛物线yx2+bx+c交x轴于A、B(3,0),交y轴于点C,直线yx+m经过点C,交x轴于E(4,0)(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y

    7、x+m于G,交抛物线于H,连接CH,将CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标5、已知关于x的一元二次方程(1)求证:不论m取何值,方程总有两个不相等的实数根;(2)若方程有两个实数根为,且,求m的值-参考答案-一、单选题1、A【解析】【分析】由二次函数的解析式可知,二次函数图象经过原点,则只有选项A,D可能正确,B,C不符合舍去,然后对A,D选项,根据二次函数的图象确定a和b的符号,然后根据一次函数的性质看一次函数图象的位置是否正确,若正确,说明它们可在同一坐标系内存在【详解】解:由二次函数的解析式可知,二次函数图象经过原点,则只有选项A,D符合,B,C不符合

    8、舍去,A、由二次函数y=ax2+bx的图象得a0,再根据0得到b0,则一次函数y=ax+b经过第一、三、四象限,所以A选项正确;D、由二次函数y=ax2+bx的图象得a0,再根据0,此方程有两个不相等的实数根,故本选项不符合题意;故选:ABC【点睛】本题考查了一元二次方程根的判别式的知识此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根3、ABD【解析】【分析】根据因式分解法解一元二次方程的方法求解即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解

    9、】解:A、x23x+2=0,适用公式法,不适合用因式分解法来解题,符合题意;B、2x2=x+4,适用公式法,不适合用因式分解法来解题,符合题意;C、(x1)(x+2)=70,即,可得,故适合用因式分解法来解题,不符合题意;D、x211x10=0,适用公式法,不适合用因式分解法来解题,符合题意;故选:ABD【点睛】此题考查了解一元二次方程,解题的关键是熟练掌握解一元二次方程的方法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法4、ACD【解析】【分析】利用公式法计算对称轴,利用解方程法确定交点坐标,根据函数图像及其开口判断y的属性,函数的增减

    10、性即可【详解】二次函数y=+2x,x=1,故A正确;=+2,=+2,(,),(,)都是二次函数y=+2x图像上的点,对称轴为x=1,a=-10,当1时,;当1时,;故B不正确;二次函数y=+2x,令y=0,得+2x=0,解得 它的图象与x轴的两个交点是(0,0)和(2,0),故C正确;二次函数y=+2x的开口向下,且它的图象与x轴的两个交点是(0,0)和(2,0),当0x2时,y0,故D正确;故选ACD【点睛】本题考查了二次函数的对称性,增减性,与x轴的交点坐标,熟练掌握抛物线的性质是解题的关键5、ABC【解析】【分析】根据一元二次方程的定义逐个判断即可【详解】解:A、是一元二次方程,故本选项

    11、符合题意;B、是一元二次方程,故本选项符合题意;C、是一元二次方程,故本选项符合题意;D、方程,整理得:,是一元一次方程,不是一元二次方程,故 线 封 密 内 号学级年名姓 线 封 密 外 本选项不符合题意;故选:【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式.三、填空题1、x=或x=2【解析】【分析】根据一元二次方程的解法解出答案即可【详解】当x2=0时,x=2,当x20时,4x=1,x=,故答案为:x=或x=2【考点】本题考查解一元二次方程,本题关键在于分情况讨论2、17【解析】【分析】根据

    12、题意可知,当直线经过点(1,12)时,直线y=kx-3与该图象有公共点;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,可得出k的最大值是15,最小值是2,即可得它们的和为17【详解】解:当直线经过点(1,12)时,12=k-3,解得k=15;当直线与抛物线只有一个交点时,(x-5)2+8=kx-3,整理得x2-(10+k)x+36=0,10+k=12,解得k=2或k=-22(舍去),k的最大值是15,最小值是2,k的最大值与最小值的和为15+2=17故答案为:17【考点】本题考查分段函数的图象与性质,一次函数图象上点的坐标特征,结合图象求出k的最大值和最小值是解题的关键3、【解析】

    13、【分析】设方程的另一个根为c,再根据根与系数的关系即可得出结论【详解】解:设方程的另一个根为c,故答案为【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键4、或【解析】【分析】设门的宽为x尺,则门的高为(x+6)尺,利用勾股定理,即可得出关于x的一元二次方程,此题得解【详解】解:设门的宽为x尺,则门的高为(x+6)尺,依题意得:即或故答案为:或【考点】本题考查了由实际问题抽象出一元二次方程以及勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键5、1或【解析】【分析】先运用根的判别式求得k的取值范围,进而

    14、确定k的值,得到抛物线的解析式,再根据折叠得到新图像的解析式,可求出函数图象与x轴的交点坐标,画出函数图象,可发现,若直线与新函数有3个交点,可以有两种情况:过交点(-1,0),根据待定系数法可得m的值;不过点(一1,0),与相切时,根据判别式解答即可【详解】解:函数与x轴有两个交点,解得,当k取最小整数时,抛物线为,将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,所以新图象的解析式为(或):因为为的,所以它的图象从左到右是上升的,当它与新图象有3个交点时它一定过,把代入得所以,与相切时,图象有三个交点,解得故答案为:1或【考点】 线 封 密 内 号学

    15、级年名姓 线 封 密 外 本题主要考查了二次函数图象与几何变换、待定系数法求函数解析式等知识点,掌握分类讨论和直线与抛物线相切时判别式等于零是解答本题的关键四、解答题1、(1);(2)1;点C的坐标是【解析】【分析】(1)将两点分别代入,得,解方程组即可;(2)根据AB=4,斜边上的高为2,Q的横坐标为1,计算点C的横坐标为-1,即到y轴的距离为1;根据直线PQ的解析式,设点A(m,-2m+6),三角形ABC是等腰直角三角形,用含有m的代数式表示点C的坐标,代入抛物线解析式求解即可.【详解】解:(1)将两点分别代入,得解得所以抛物线的解析式是(2)如图2,抛物线的对称轴是y轴,当点A与点重合时

    16、,作于H是等腰直角三角形,和也是等腰直角三角形,点C到抛物线的对称轴的距离等于1如图3,设直线PQ的解析式为y=kx+b,由,得解得直线的解析式为,设,所以所以将点代入,得整理,得 线 封 密 内 号学级年名姓 线 封 密 外 因式分解,得解得,或(与点P重合,舍去)当时,所以点C的坐标是【点评】本题考查了抛物线解析式的确定,一次函数解析式的确定,等腰直角三角形的性质,一元二次方程的解法,熟练掌握待定系数法,灵活用解析式表示点的坐标,熟练解一元二次方程是解题的关键2、 (1)证明见解析(2)1(答案不唯一)【解析】【分析】(1)由题意知,判断其与0的关系,即可得出结论;(2)表示出方程的两根,

    17、根据要求进行求解即可(1)证明:由题意知(m+2)20,0,关于x的方程x2+(m2)x2m0总有实数根;(2)解:由(1)知,(m+2)2,x,方程有一根小于2,m2,m2,m为整数,满足条件的m的一个值为1【点睛】本题考查了一元二次方程的根解题的关键在于利用判根公式确定方程根的个数,利用公式求方程的根3、 (1);(2);(3)m的值为3或1或2或7;【解析】【分析】(1)根据一元二次方程的解求出OB和OC的长度,然后得到点B,点C坐标和OA的长度,进而得到点A坐标,最后使用待定系数法即可求出直线AC的解析式;(2)根据点A,点B坐标使用待定系数法求出直线AB的解析式,根据直线AB解析式和

    18、直线AC解析式求出点P,Q,D坐标,进而求出PQ和CD的长度,然后根据三角形面积公式求出S,最后对a的值进行分类讨论即可;(3)根据MAB的直角顶点进行分类讨论,然后根据勾股定理求解即可 线 封 密 内 号学级年名姓 线 封 密 外 (1)解:解方程得,线段OB,OC()的长是关于x的方程的两个根,OB1,OC6,CO2AO,OA3,设直线AC的解析式为,把点,代入得,解得,直线AC的解析式为;(2)解:设直线AB的解析式为y=px+q,把,代入直线AB解析式得,解得,直线AB的解析式为,PDx轴,垂足为D,PD与直线AB交于点Q,点P的横坐标为a,当点P与点A或点C重合时,即当a=0或时,此

    19、时S=0,不符合题意,当时,当时,当时,;(3)解:,当MAB=90时,解得,当ABM=90时,解得m=7, 线 封 密 内 号学级年名姓 线 封 密 外 当AMB=90时,解得,m的值为3或1或2或7【点睛】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键4、 (1)yx2+2x+3;(2)S(x)2+;当x时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】【分析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式(2)将抛物线解析式配成顶点式,可求出点D的

    20、坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CGHG,列等式求解即可【详解】(1)将点E代入直线解析式中,04+m,解得m3,解析式为yx+3,C(0,3),B(3,0),则有,解得,抛物线的解析式为:yx2+2x+3;(2)yx2+2x+3(x1)2+4,D(1,4),设直线BD的解析式为ykx+b,代入点B、D,解得,直线BD的解析式为y2x+6,则点M的坐标为(x,2x+6),S(3+62x)x(x)2+,当x时,S有最大值,最大值为(3)存在,如图所示, 线

    21、 封 密 内 号学级年名姓 线 封 密 外 设点P的坐标为(t,0),则点G(t,t+3),H(t,t2+2t+3),HG|t2+2t+3(t+3)|t2t|CGt,CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HGy轴,HGCF,HGHF,CGCF,GHCCHF,FCHCHG,FCHFHC,GCHGHC,CGHG,|t2t|t,当t2tt时,解得t10(舍),t24,此时点P(4,0)当t2tt时,解得t10(舍),t2,此时点P(,0)综上,点P的坐标为(4,0)或(,0)【点睛】此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CGHG为解题关键5、(1)见详解;(2)【解析】【分析】(1)根据一元二次方程根的判别式可直接进行求解;(2)利用一元二次方程根与系数的关系可直接进行求解【详解】(1)证明:, 线 封 密 内 号学级年名姓 线 封 密 外 ,不论m取何值,方程总有两个不相等的实数根;(2)解:,方程有两个实数根为,解得:【点睛】本题主要考查一元二次方程根的判别式及根与系数的关系,熟练掌握一元二次方程根的判别式及根与系数的关系是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年解析卷人教版九年级数学上册期中定向测评试题 卷(Ⅰ)(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-647332.html
    相关资源 更多
  • 人教版五年级下册数学 期末测试卷附答案【巩固】.docx人教版五年级下册数学 期末测试卷附答案【巩固】.docx
  • 人教版五年级下册数学 期末测试卷附答案【实用】.docx人教版五年级下册数学 期末测试卷附答案【实用】.docx
  • 人教版五年级下册数学 期末测试卷附答案【完整版】.docx人教版五年级下册数学 期末测试卷附答案【完整版】.docx
  • 人教版五年级下册数学 期末测试卷附答案【夺分金卷】.docx人教版五年级下册数学 期末测试卷附答案【夺分金卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【基础题】.docx人教版五年级下册数学 期末测试卷附答案【基础题】.docx
  • 人教版五年级下册数学 期末测试卷附答案【培优】.docx人教版五年级下册数学 期末测试卷附答案【培优】.docx
  • 人教版五年级下册数学 期末测试卷附答案【培优b卷】.docx人教版五年级下册数学 期末测试卷附答案【培优b卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【培优a卷】.docx人教版五年级下册数学 期末测试卷附答案【培优a卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【名师推荐】.docx人教版五年级下册数学 期末测试卷附答案【名师推荐】.docx
  • 人教版五年级下册数学 期末测试卷附答案【典型题】.docx人教版五年级下册数学 期末测试卷附答案【典型题】.docx
  • 人教版五年级下册数学 期末测试卷附答案【b卷】.docx人教版五年级下册数学 期末测试卷附答案【b卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案【a卷】.docx人教版五年级下册数学 期末测试卷附答案【a卷】.docx
  • 人教版五年级下册数学 期末测试卷附答案ab卷.docx人教版五年级下册数学 期末测试卷附答案ab卷.docx
  • 人教版五年级下册数学 期末测试卷附答案.docx人教版五年级下册数学 期末测试卷附答案.docx
  • 人教版五年级下册数学 期末测试卷附完整答案(考点梳理).docx人教版五年级下册数学 期末测试卷附完整答案(考点梳理).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(网校专用).docx人教版五年级下册数学 期末测试卷附完整答案(网校专用).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(精选题).docx人教版五年级下册数学 期末测试卷附完整答案(精选题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(精品).docx人教版五年级下册数学 期末测试卷附完整答案(精品).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(有一套).docx人教版五年级下册数学 期末测试卷附完整答案(有一套).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(易错题).docx人教版五年级下册数学 期末测试卷附完整答案(易错题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(必刷).docx人教版五年级下册数学 期末测试卷附完整答案(必刷).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(夺冠).docx人教版五年级下册数学 期末测试卷附完整答案(夺冠).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(夺冠系列).docx人教版五年级下册数学 期末测试卷附完整答案(夺冠系列).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(名校卷).docx人教版五年级下册数学 期末测试卷附完整答案(名校卷).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(名师系列).docx人教版五年级下册数学 期末测试卷附完整答案(名师系列).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(各地真题).docx人教版五年级下册数学 期末测试卷附完整答案(各地真题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(历年真题).docx人教版五年级下册数学 期末测试卷附完整答案(历年真题).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(典优).docx人教版五年级下册数学 期末测试卷附完整答案(典优).docx
  • 人教版五年级下册数学 期末测试卷附完整答案(全国通用).docx人教版五年级下册数学 期末测试卷附完整答案(全国通用).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1