2022届新高考数学一轮练习:专练18 高考大题专练(一) 导数的应用 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022届新高考数学一轮练习:专练18高考大题专练一导数的应用 WORD版含解析 2022 新高 数学 一轮 练习 18 高考 大题专练 导数 应用 WORD 解析
- 资源描述:
-
1、专练18高考大题专练(一)导数的应用1.已知函数f(x)|xa|lnx(a0)(1)讨论f(x)的单调性;(2)比较与的大小(nN*且n2),并证明你的结论2.设函数f(x)ax2(4a1)x4a3ex.(1)若曲线yf(x)在点(1,f(1)处的切线与x轴平行,求a;(2)若f(x)在x2处取得极小值,求a的取值范围3.2020全国卷设函数f(x)x3bxc,曲线yf(x)在点处的切线与y轴垂直(1)求b;(2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不大于1.4.已知函数f(x).(1)若函数f(x)在区间上存在极值,求正实数a的取值范围;(2)如果当x1时不
2、等式f(x)恒成立,求实数k的取值范围5.2020全国卷已知函数f(x)exax2x.(1)当a1时,讨论f(x)的单调性;(2)当x0时,f(x)x31,求a的取值范围6.2021全国新高考卷已知函数f(x)x(1lnx)(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blnaalnbab,证明:2e.7.2021全国乙卷设函数f(x)ln (ax),已知x0是函数yxf(x)的极值点(1)求a;(2)设函数g(x),证明:g(x)1.8.2021全国甲卷已知a0且a1,函数f(x)(x0)(1)当a2时,求f(x)的单调区间;(2)若曲线yf(x)与直线y1有且仅有两个交点
3、,求a的取值范围专练18高考大题专练(一)导数的应用1解析:(1)函数f(x)的定义域为(0,)函数f(x)可化为f(x)当0xa时,f(x)10,所以f(x)在(0,a)上单调递减当xa时,f(x)1,此时要考虑a与1的大小若a1,则f(x)0,且f(x)在a,)的任意子区间内都不恒等于0,故f(x)在(a,)上单调递增;若0a1,则当ax1时,f(x)1时,f(x)0,故f(x)在a,1)上单调递减,在(1,)上单调递增,f(x)在xa处连续所以当a1时,f(x)在(0,a)上单调递减,在(a,)上单调递增;当0a1时,x1lnx0,即lnxx1,所以1.所以当n2,nN*时111n1,则
4、当x时,f(x)0.所以f(x)在x2处取得极小值若a,则当x(0,2)时,x20,ax1x10.所以2不是f(x)的极小值点综上可知,a的取值范围是.3解析:(1)f(x)3x2b.依题意得f0,即b0.故b.(2)由(1)知f(x)x3xc,f(x)3x2.令f(x)0,解得x或x.f(x)与f(x)的情况为:因为f(1)fc,所以当c时,f(x)只有大于1的零点因为f(1)fc,所以当c时,f(x)只有小于1的零点由题设可知c.当c时,f(x)只有两个零点和1.当c时,f(x)只有两个零点1和.当c时,f(x)有三个零点x1,x2,x3,且x1,x2,x3.综上,若f(x)有一个绝对值不
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-676543.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2022年下学期怀化市高三期末考试答案(生物).pdf
