分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022年京改版八年级数学上册期末模拟考试题 卷(Ⅰ)(含答案详解).docx

  • 上传人:a****
  • 文档编号:693316
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:25
  • 大小:360.77KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年京改版八年级数学上册期末模拟考试题 卷含答案详解 2022 改版 八年 级数 上册 期末 模拟 考试题 答案 详解
    资源描述:

    1、京改版八年级数学上册期末模拟考试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,在数轴上表示实数的点可能()A点PB点QC点MD点N2、5个红球、4个白球放入一个不透明的盒子里,从中摸出6个

    2、球,恰好红球与白球都摸到,这个事件()A不可能发生B可能发生C很可能发生D必然发生3、下列二次根式中,最简二次根式是()ABCD4、如图,RtACB中,ACB=90,ACB的角平分线AD,BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB=135; AD=PF+PH;DH平分CDE;S四边形ABDE=SABP;SAPH=SADE,其中正确的结论有()个A2B3C4D55、如图,在ABC中,AD是BC边上的高,BAF=CAG=90,AB=AF,AC=AG,连接FG,交DA的延长线于点E,连接BG,CF, 则下列结论:BG=CF;BGCF;EAF=ABC;EF=E

    3、G,其中正确的有()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列运算不正确的是()ABCD2、下列命题中正确的是()A有两个角和第三个角的平分线对应相等的两个三角形全等;B有两条边和第三条边上的中线对应相等的两个三角形全等;C有两条边和第三条边上的高对应相等的两个三角形全等D有两条边和一个角对应相等的两个三角形全等3、下列结论不正确的是()A64的立方根是B没有立方根C立方根等于本身的数是0D= 4、如图,已知于点D,现有四个条件:;那么能得出的条件是()ABCD5、在直角三角形中,若两边的长分别为1,2,则第三边的边长为()A3BCD1第卷(非选择题 65分)三、填空题(5小

    4、题,每小题5分,共计25分)1、方程的解为_2、若一个偶数的立方根比2大,平方根比4小,则这个数是_.3、计算_4、公元三世纪,我国汉代数学家赵爽在注解周髀算经时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角的正切为,那么大正方形的面积是_5、如图,若ABCA1B1C1,且A110,B40,则C1_四、解答题(5小题,每小题8分,共计40分)1、在计算的值时,小亮的解题过程如下:解:原式(1)老师认为小亮的解法有错,请你指出:小亮是从第_步开始出错的;(2)请你给出正确的解题过程2、计算(1)(2)3、某工厂计划在规

    5、定时间内生产24000个零件由于销售商突然急需供货,工厂实际工作效率比原计划提高了50%,并提前5天完成这批零件的生产任务求该工厂原计划每天加工这种零件多少个?4、(1)解方程:(2)计算:5、已知:在中,点在直线上,点在同一条直线上,且,【问题初探】(1)如图1,若平分,求证:请依据以下的简易思维框图,写出完整的证明过程【变式再探】(2)如图2,若平分的外角,交的延长线于点,问:和的数量关系发生改变了吗?若改变,请写出正确的结论,并证明;若不改变,请说明理由【拓展运用】(3)如图3,在的条件下若,求的长度-参考答案-一、单选题1、C【解析】【分析】确定是在哪两个相邻的整数之间,然后确定对应的

    6、点即可解决问题【详解】解:91516,34,对应的点是M故选:C【考点】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解2、D【解析】【分析】根据事件的可能性判断相应类型即可【详解】5个红球、4个白球放入一个不透明的盒子里,由于红球和白球的个数都小于6,从中摸出6个球,恰好红球与白球都摸到,是必然事件.故选:D.【考点】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间3、A【解析】【分析】根据最简二次根式的被开方数不含分母,被开方数不含开

    7、得尽的因数或因式,可得答案【详解】解:A. ,是最简二次根式,故正确;B. ,不是最简二次根式,故错误;C. ,不是最简二次根式,故错误;D. ,不是最简二次根式,故错误.故选A.【考点】本题考查了最简二次根式,最简二次根式的被开方数不含分母,被开方数不含开得尽的因数或因式4、B【解析】【分析】正确利用三角形内角和定理以及角平分线的定义即可解决问题正确证明ABPFBP,推出PA=PF,再证明APHFPD,推出PH=PD即可解决问题错误利用反证法,假设成立,推出矛盾即可错误,可以证明S四边形ABDE=2SABP正确由DHPE,利用等高模型解决问题即可【详解】解:在ABC中,AD、BE分别平分BA

    8、C、ABCACB=90A+B=90又AD、BE分别平分BAC、ABCBAD+ABE=(A+B)=45APB=135,故正确BPD=45又PFADFPB=90+45=135APB=FPB又ABP=FBPBP=BPABPFBP(ASA)BAP=BFP,AB=FB,PA=PF在APH和FPD中APHFPD(ASA)PH=PDAD=AP+PD=PF+PH故正确ABPFBP,APHFPDSAPB=SFPB,SAPH=SFPD,PH=PDHPD=90HDP=DHP=45=BPDHDEPSEPH=SEPDSAPH=SAED,故正确S四边形ABDE=SABP+SAEP+SEPD+SPBD=SABP+(SAEP

    9、+SEPH)+SPBD=SABP+SAPH+SPBD=SABP+SFPD+SPBD=SABP+SFBP=2SABP,故不正确若DH平分CDE,则CDH=EDHDHBECDH=CBE=ABECDE=ABCDEAB,这个显然与条件矛盾,故错误故选B【考点】本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理,三角形的面积等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型5、D【解析】【分析】证得CAFGAB(SAS),从而推得正确;利用CAFGAB及三角形内角和与对顶角,可判断正确;证明AFMBAD(AAS),得出FM=AD,FAM=ABD,则正确,同理ANGCDA

    10、,得出NG=AD,则FM=NG,证明FMEGNE(AAS)可得出结论正确【详解】解:BAF=CAG=90,BAF+BAC=CAG+BAC,即CAF=GAB,又AB=AF=AC=AG,CAFGAB(SAS),BG=CF,故正确;FACBAG,FCA=BGA,又BC与AG所交的对顶角相等,BG与FC所交角等于GAC,即等于90,BGCF,故正确;过点F作FMAE于点M,过点G作GNAE交AE的延长线于点N,FMA=FAB=ADB=90,FAM+BAD=90,FAM+AFM=90,BAD=AFM,又AF=AB,AFMBAD(AAS),FM=AD,FAM=ABD,故正确,同理ANGCDA,NG=AD,

    11、FM=NG,FMAE,NGAE,FME=ENG=90,AEF=NEG,FMEGNE(AAS)EF=EG故正确故选:D【考点】本题综合考查了全等三角形的判定与性质及等腰三角形的三线合一性质与互余、对顶角,三角形内角和等几何基础知识熟练掌握全等三角形的判定与性质是解题的关键二、多选题1、ABD【解析】【分析】根据二次根式的性质以及二次根式的运算法则化简和计算可得结果【详解】解:A、,运算不正确,符合题意;B、,运算不正确,符合题意;C、,运算正确,不符合题意;D、,运算错误,符合题意;故选:ABD【考点】本题考查了二次根式的性质以及二次根式的运算,熟练运用运算法则是解本题的关键2、AB【解析】【分

    12、析】结合已知条件和全等三角形的判定方法,对所给的四个命题依次判定,即可解答【详解】A、正确可以用AAS判定两个三角形全等;如图:BB,CC,AD平分BAC,AD平分BAC,且ADAD, BB,CC,BACBAC,AD,AD分别平分BAC,BAC,BADBAD ,ABDABD(AAS),ABAB,在ABC和ABC中, ,ABCABC(AAS)B、正确可以用“倍长中线法”,用SAS定理,判断两个三角形全等,如图, , , ,AD,AD分别为、 的中线,分别延长AD,AD到E,E,使得AD=DE,AD=DE, ,ADCEDB,BE=AC,同理:BE=AC,BE=BE,AE=AE,ABEABE,BAE

    13、=BAE,E=E,CAD=CAD,BAC=BAC, , ,BACBACC、不正确因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等D、不正确,必须是两边及其夹角分别对应相等的两个三角形全等故选:AB【考点】本题考查了全等三角形的判定方法,要根据选项提供的已知条件逐个分析,看是否符合全等三角形的判定方法,注意SSA是不能判定两三角形全等的3、ABC【解析】【分析】根据立方根的定义解答即可【详解】解:A、64的立方根是4,原说法错误,故本选项符合题意;B、有立方根,是,原说法错误,故本选项符合题意;C、立方根等于它本身的

    14、数是0、1、-1,原说法错误,故本选项符合题意;D、,故选项D不符合题意,故选ABC【考点】本题考查了立方根解题的关键是掌握立方根的定义的运用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根4、ABC【解析】【分析】根据全等三角形的判定方法,即可求解【详解】解:, ,A、若,可用角角边证得,故本选项符合题意;B、若,可用角角边证得,故本选项符合题意;C、若,可用边角边证得,故本选项符合题意;D、若,是角角角,不能证得,故本选项不符合题意;故选:ABC【考点】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、边边边是解题的关键5、BC【解析】【

    15、分析】分两种情况讨论:当第三边为直角边或斜边时,再利用勾股定理可得结论.【详解】解:当直角三角形的第三边为斜边时:则第三边为:当直角三角形的第三边为直角边时,则为斜边,则第三边为: 故第三边为:或.故选:【考点】本题考查的是勾股定理的应用,有清晰的分类讨论思想是解题的关键.三、填空题1、【解析】【分析】先通分,再根据分式有意义的条件即分母不为0,分式为0即分式的分子为0解题即可【详解】解:故答案为:【考点】本题考查解分式方程,涉及分式有意义的条件、分式的值为0等知识,是重要考点,难度较易,掌握相关知识是解题关键2、10,12,14【解析】【分析】首先根据立方根平方根的定义分别求出2的立方,4的

    16、平方,然后就可以解决问题【详解】解:2的立方是8,4的平方是16,所以符合题意的偶数是10,12,14故答案为10,12,14【考点】本题考查立方根的定义和性质,注意本题答案不唯一求一个数的立方根,应先找出所要求的这个数是哪一个数的立方由开立方和立方是互逆运算,用立方的方法求这个数的立方根注意一个数的立方根与原数的性质符号相同3、【解析】【分析】根据分式的运算法则计算即可【详解】解:,故答案为:【考点】此题主要考查分式的运算,解题的关键是熟知其运算法则4、169【解析】【分析】由题意知小正方形的边长为7设直角三角形中较小边长为a,较长的边为b,运用正切函数定义求解【详解】解:由题意知,小正方形

    17、的边长为7,设直角三角形中较小边长为a,较长的边为b,则tan短边:长边a:b5:12所以ba,又以为ba+7,联立,得a5,b12所以大正方形的面积是:a2+b225+144169故答案是:169【考点】本题主要考查了解直角三角形、勾股定理的证明和正方形的面积,掌握解直角三角形、勾股定理的证明和正方形的面积是解题的关键.5、30【解析】【分析】本题实际上是全等三角形的性质以及根据三角形内角和等于180来求角的度数【详解】ABCA1B1C1,C1=C,又C=180-A-B=180-110-40=30,C1=C=30故答案为30【考点】本题考查了全等三角形的性质;解答时,除必备的知识外,还应将条

    18、件和所求联系起来,即将所求的角与已知角通过全等及三角形内角之间的关系联系起来四、解答题1、(1);(2)答案见解析【解析】【分析】根据二次根式的运算法则即可求出答案【详解】解:(1)二次根式加减时不能将根号下的被开方数进行加减,故错误,故填;(2)原式=2=6=4【考点】本题考查了二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型2、(1);(2)0【解析】【分析】(1)先算乘除并化简,再算加减法;(2)先利用平方差公式计算,再作加减法【详解】解:(1)=;(2)=0【考点】本题考查了二次根式的混合运算,解题的关键是掌握运算法则3、该工厂原计划每天加工这种零件1600

    19、个【解析】【分析】设该工厂原计划每天加工这种零件x个,则实际每天加工这种零件(1+50%)x个,根据工作时间=工作总量工作效率结合实际比原计划少用5天完成这批零件的生产任务,即可得出关于x的分式方程,解之经检验后即可得出结论【详解】解:设该工厂原计划每天加工这种零件x个,则实际每天加工这种零件(1+50%)x个,依题意,得:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则解得:x1600,经检验,x1600是原方程的解,且符合题意答:该工厂原计划每天加工这种零件1600个【考点】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键4、(1)原分式方程无解

    20、(2)【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)首先将式子通分,化成同分母,分子合并同类项即可【详解】解:(1) 经检验:是增根所以原方程无解(2)原式= =【考点】本题考查了解分式方程和分式的化简,解题的关键是熟练掌握分式方程的解法和分式的化简运算法则5、(1)见解析(2);理由见解析(3)【解析】【分析】(1)根据ASA证明得BE=BC,得,进一步可得结论;(2)根据ASA证明得BE=BC,得;(3)连结,分别求出AEB=ADE=ACB=225,再证明AE=CD,ADC=90,由勾股定理可得AC,由EC=EA+AC可得结论【详解】解:(1)证明平分,在和中, ;理由:平分,在和中,连结,且,由得,【考点】此题主要考查了全等三角形的判定与性质,勾股定理等知识,连接AD是解答此题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年京改版八年级数学上册期末模拟考试题 卷(Ⅰ)(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-693316.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1