分享
分享赚钱 收藏 举报 版权申诉 / 27

类型2022年人教版九年级数学上册第二十二章二次函数综合测评试题(含答案解析版).docx

  • 上传人:a****
  • 文档编号:695942
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:27
  • 大小:499.92KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 年人教版 九年级 数学 上册 第二十二 二次 函数 综合 测评 试题 答案 解析
    资源描述:

    1、人教版九年级数学上册第二十二章二次函数综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、二次函数yx2+bx的对称轴为直线x2,若关于x的一元二次方程x2+bxt0(t为实数)在1x6的范围内有解,

    2、则t的取值范围是()A5t12B4t5C4t5D4t122、已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是()A或2BC2D3、如图,抛物线y= a1x2与抛物线y=a2x2 +bx的交点P在第三象限,过点P作x轴的平行线,与两条抛物线分别交于点M、N,若,则的值是( )A3B2CD4、如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3),若抛物线y=ax2的图象与正方形有公共顶点,则实数a的取值范围是()ABCD5、二次函数y=ax2+bx+c的图象如图所示,则该二次函数的顶点坐标为(

    3、)A(1,3)B(0,1)C(0,3)D(2,1)6、函数yax与yax2+a(a0)在同一直角坐标系中的大致图象可能是()ABCD7、已知二次函数yax24ax+3与x轴交于A、B两点,与y轴交于点C,若SABC3,则a()ABC1D18、下列函数中,二次函数是()Ay4x+5Byx(2x3)Cyax2+bx+cD9、已知点(1,y1),(2,y2)都在函数yx2的图象上,则()Ay1y2By1y2Cy1y2Dy1,y2大小不确定10、已知抛物线yax2+bx+c(a0)如图所示,那么a、b、c的取值范围是()Aa0、b0、c0Ba0、b0、c0Ca0、b0、c0Da0、b0、c0第卷(非选

    4、择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是二次函数 和一次函数y2kx+t的图象,当y1y2时,x的取值范围是_2、若二次函数图象的顶点在x轴上方,则实数m的取值范围是_3、如果抛物线y(m1)x2有最低点,那么m的取值范围为_4、若函数图像与x轴的两个交点坐标为和,则_5、抛物线yax2+bx+c(a0)的部分图象如图所示,其与x轴的一个交点坐标为(3,0),对称轴为x1,则当y0时,x的取值范围是_三、解答题(5小题,每小题10分,共计50分)1、如图1,排球场长为18m,宽为9m,网高为2.24m队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路

    5、线是抛物线的一部分,当球运动到最高点A时,高度为2.88m即BA2.88m这时水平距离OB7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围)并判断这次发球能否过网?是否出界?说明理由;(2)若球过网后的落点是对方场地号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)2、如图,抛物线yax2+bx(a0,b0)交x轴于O,A两点,顶点为B(2,4)(1)求抛物线的解析式;(2)直线ykx+m(k0)过点B

    6、,且与抛物线交于另一点D(点D与点A不重合),交y轴于点C过点D作DEx轴于点E,连接AB,CE若k1,求CDE的面积;求证:CEAB3、今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:购票方式甲乙丙可游玩景点和门票价格100元/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和4

    7、00人原计划购买乙种门票的游客改为购买丙种门票若丙种门票价格下降10元,求景区六月份的门票总收入;问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?4、已知,如图,在RtABC中,C90,A60,AB12cm,点P从点A沿AB以每秒2cm的速度向点B运动,点Q从点C以每秒1cm的速度向点A运动,设点P、Q分别从点A、C同时出发,运动时间为t(秒)(0t6),回答下列问题:(1)直接写出线段AP、AQ的长(含t的代数式表示):AP_,AQ_;(2)设APQ 的面积为S,写出S与t的函数关系式;(3)如图,连接PC,并把PQC沿QC翻折,得到四边形,那么是否存在某一

    8、时间t,使四边形为菱形?若存在,求出此时t的值;若不存在,说明理由5、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、直线与直线交于点,当时,求值-参考答案-一、单选题1、D【解析】【分析】根据对称轴方程可得b=-4,可得二次函数解析式,可得顶点坐标为(2,-4),关于x的一元二次方程x2+bxt0的解为二次函数yx24x与直线yt的交点的横坐标,当1x6时,4t12,进而求解;【详解】对称轴为直线x2,b4,二次函数解析式为yx24x,顶点坐标为(2,-4),1x6,当x=-1时

    9、,y=5,当x=6时,y=12,二次函数y的取值范围为4t12,关于x的一元二次方程x2+bxt0的解为yx24x与直线yt的交点的横坐标,4t12,故选:D【考点】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键2、B【解析】【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可【详解】解:函数向右平移3个单位,得:;再向上平移1个单位,得:+1,得到的抛物线正好经过坐标原点+1即解得:或抛物线的对称轴在轴右侧00故选:B【考点】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减3、B

    10、【解析】【分析】设 ,则由抛物线的对称性可知,从而可得,再由即可得到,再根据即可得到【详解】解:设 ,由抛物线的对称性可知,即,又,即,或(舍去),故选B【考点】本题主要考查了二次函数的对称性,二次函数上点的坐标特征,解题的关键在于能够求出4、A【解析】【分析】求出抛物线经过两个特殊点时的a的值即可解决问题【详解】解:当抛物线经过(1,3)时,a=3,当抛物线经过(3,1)时,a=,观察图象可知a3,故选:A【考点】本题考查二次函数图象与系数的关系,二次函数图象上的点的坐标特征等知识,解题的关键是熟练掌握基本知识,属于中考常考题型5、D【解析】【分析】根据抛物线与轴的两个交点坐标确定对称轴后即

    11、可确定顶点坐标【详解】解:观察图象发现图象与轴交于点和,对称轴为,顶点坐标为,故选:D【考点】本题考查了二次函数的性质及二次函数的图象的知识,解题的关键是根据交点坐标确定对称轴,难度不大6、D【解析】【分析】先根据一次函数的性质确定a0与a0两种情况分类讨论抛物线的顶点位置即可得出结论【详解】解:函数yax与yax2+a(a0)A. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是交y轴正半轴,故选项A不正确;B. 函数yax图形可得a0,则yax2+a(a0)开口方向向下正确,当顶点坐标为(0,a),应交于y轴负半轴,而不是在坐

    12、标原点上,故选项B不正确;C. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴,故选项C不正确;D. 函数yax图形可得a0,则yax2+a(a0)开口方向向上正确,当顶点坐标为(0,a),应交于y轴正半轴正确,故选项D正确;故选D【考点】本题考查的知识点是一次函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键7、D【解析】【分析】由根与系数的关系求得AB的长度,由抛物线解析式求得点C的坐标,然后根据列出关于的方程,解方程即可【详解】令,则ax24ax+30,x1+x24,x1x2,AB|x1x2|,令x0,y3,OC3,

    13、SABCABOC,故选:D【考点】本题考查了二次函数与坐标轴交点的问题,一元二次方程根与系数的关系,熟练掌握一元二次方程跟与系数的关系是解题关键8、B【解析】【分析】根据二次函数的定义判断即可【详解】A、y4x+5是一次函数,故选项A不合题意;B、yx(2x3)是二次函数,故选项B符合题意;C、当a0时,yax2+bx+c不是二次函数,故选项C不合题意;D、不是二次函数,故选项D不合题意故选:B【考点】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键9、B【解析】【分析】分别求出和的值即可得到答案【详解】解:点(1,y1),(2,y2)都在函数yx2的图象上,故选B【考点】本

    14、题主要考查了二次函数图像上点的坐标特征,正确求出和是解题的关键10、D【解析】【分析】根据开口方向可判断a的符号,根据对称轴可判断b的符号,根据图像与y轴的交点可判断c的符号.【详解】解:由图象开口可知:a0;由图象与y轴交点可知:c0;由对称轴可知:0,b0;a0,b0,c0,故选:D【考点】本题考查二次函数的图像与性质,解题的关键是熟练运用二次函数的图象与性质,本题属于中考常考题型二、填空题1、1x2【解析】【分析】根据图象可以直接回答,使得y1y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围【详解】根据图象可得出:当

    15、y1y2时,x的取值范围是:1x2故答案为:1x2【考点】本题考查了二次函数的性质本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度2、【解析】【分析】先求出顶点坐标,再令顶点的纵坐标大于0即可求解【详解】解:二次函数的对称轴为,当时,顶点坐标为,顶点在x轴上方,即,故答案为:【考点】本题考查二次函数的顶点坐标,掌握求二次函数顶点坐标的方法是解题的关键3、m1【解析】【分析】直接利用二次函数的性质得出m1的取值范围进而得出答案【详解】解:抛物线y=(m1)x2有最低点,m10,解得:m1故答案为m1【考点】本题考查了二次函数的性质,正确掌握二次函数的性质是解题的关键4、-

    16、2【解析】【分析】根据二次函数图象对称轴所在的直线与x轴的交点的坐标,即为它的图象与x轴两交点之间线段中点的横坐标,即可求得【详解】解:函数图像与x轴的两个交点坐标为和由对称轴所在的直线为: 解得 故答案为:-2【考点】本题考查了二次函数的性质及中点坐标的求法,熟练掌握和运用二次函数的性质及中点坐标的求法是解决本题的关键5、3x1【解析】【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y0时,x的取值范围【详解】解:抛物线yax2+bx+c(a0)与x轴的一个交点为(3,0),对称轴为x1,抛物线与x轴的另一个交点为(1,

    17、0),由图象可知,当y0时,x的取值范围是3x1故答案为:3x1【考点】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键三、解答题1、(1)这次发球过网,但是出界了,理由详见解析;(2)发球点O在底线上且距右边线0.1米处【解析】【分析】(1)求出抛物线表达式,再确定x9和x18时,对应函数的值即可求解;(2)当y0时,y(x7)2+2.880,解得:x19或5(舍去5),求出PQ68.4,即可求解【详解】(1)设抛物线的表达式为:ya(x7)2+2.88,将x0,y1.9代入上式并解得:a,故抛物线的表达式为:y(x7)2+2.88;当x9时,y(x7)2+2.882.

    18、82.24,当x18时,y(x7)2+2.880.640,故这次发球过网,但是出界了;(2)如图,分别过点作底线、边线的平行线PQ、OQ交于点Q,在RtOPQ中,OQ18117,当y0时,y(x7)2+2.880,解得:x19或5(舍去5),OP19,而OQ17,故PQ68.4,98.40.50.1,发球点O在底线上且距右边线0.1米处.【考点】此题考查求二次函数的解析式,利用自变量求对应的函数值的计算,勾股定理解直角三角形,二次函数的实际应用,正确理解题意,明确“能否过网”,“是否出界”词语的含义找到解题的方向是解答此题的关键.2、(1)y=x2-4x;(2);见解析【解析】【分析】(1)先

    19、求出A点的坐标,然后用待定系数法求解即可;(2)先求出直线BD的解析式,然后得到D点的坐标,由此求解即可;过点B作BFx轴于F,则AFB=COE=90,由(1)得A(4,0),B(2,-4),则AF=2,BF=4,联立得,求得,从而可以得到,即可证明AFBEOC,得到FAB=OEC,由此即可证明【详解】解:(1)抛物线yax2+bx(a0,b0)交x轴于O,A两点,顶点为B(2,4)抛物线的对称轴为,A(4,0),解得,抛物线的解析式为:;(2)当k=1时,直线的解析式为,直线经过B(2,-4),直线的解析式为,解得或(舍去)D(3,-3),DE=3,OE=3,;如图,过点B作BFx轴于F,A

    20、FB=COE=90,由(1)得A(4,0),B(2,-4),F(2,0),AF=2,BF=4,联立得,OE=,C是直线与y轴的交点,C(0,m),OC=-m,AFBEOC,FAB=OEC,AB/CE【考点】本题主要考查了一次函数和二次函数的综合,待定系数法求函数解析式,相似三角形的性质与判定,平行线的判定,一元二次方程根与系数的关系等等,解题的关键在于能够熟练掌握相关知识进行求解3、(1)20%;(2)798万元,当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【解析】【分析】(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,则四月份的游客为人,五月份的

    21、游客为人,再列方程,解方程可得答案;(2)分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;设丙种门票价格降低元,景区六月份的门票总收入为万元,再列出与的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案【详解】解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为,由题意,得 解这个方程,得(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%(2)由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:(万人),购买甲种门票的人数为:(万人),购买乙种门票的人数为:(万人),所以:门票收入问;(万元)答:景区六月份的门票总收入为798万元设丙

    22、种门票价格降低元,景区六月份的门票总收入为万元,由题意,得化简,得, ,当时,取最大值,为817.6万元 答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元【考点】本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键4、(1)2t,;(2);(3)存在,t4时,四边形是菱形【解析】【分析】(1)根据A60,AB12cm,得出AC的长,进而得出AP2t,(2)过点P作PHAC于H由AP2t,AHt,得出,从而求得S与t的函数关系式;(3)过点P作PMAC于M,根据菱形的性质得PQPC,则可得出求得t即可【详解】解:(

    23、1)在RtABC中,C90,A60,AB12cm,AC6,由题意知:AP2t,故答案为: (2)如图过点P作PHAC于HC90,A60,AB12cm,B30,HPA30,AP2t,AHt, (3)当t4时,四边形PQPC是菱形,理由如下:证明:如图过点P作PMAC于M,CQt,由(2)可知,AMAPt,QCAM, 由对折可得: 当PCPQ时,四边形是菱形, CMMQAQAC2, 当t4时,四边形是菱形【考点】本题考查的是含的直角三角形的性质,勾股定理的应用,列二次函数关系式,菱形的判定与性质,掌握以上知识是解题的关键5、(1);(2)的值为,【解析】【分析】(1)由直线BC求出B、C的坐标,再代入二次函数的解析式,求出b、c的值,得出二次函数的解析式;(2)用含有m的代数式表示点E和点F的坐标,用相似三角形对应边成比例的性质列方程,求出m的值.【详解】(1)直线的解析式点,点和在抛物线上,解得:二次函数的解析式为:(2)二次函数与轴交于点、点轴交直线于点点轴,轴,轴交直线于点,点点的坐标为,点的坐标为若点在原点右侧,如图1,则,即,解得:,;若点在原点左侧,如图2,则即,解得:,(舍去);综上所述,的值为,【考点】本题考查二次函数与几何的综合问题,熟练掌握二次函数的性质是本题的解题关键,解题时结合一次函数的性质,利用相似三角形的性质列方程,灵活应用函数图像上点的坐标特征.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册第二十二章二次函数综合测评试题(含答案解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-695942.html
    关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1