2022年人教版九年级数学上册第二十四章圆同步训练试卷(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 年人教版 九年级 数学 上册 第二 十四 同步 训练 试卷 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知在中,是直径,则下列结论不一定成立的是()ABCD到、的距离相等2、如图,在ABCD中,为的直径,O和相切
2、于点E,和相交于点F,已知,则的长为()ABCD23、如图,在ABC中,ACB90,ACBC,AB4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A2BC2D4、 “圆材埋壁”是我国古代著名数学著作九章算术中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:如图所示,CD为O的直径,弦ABCD,垂足为E,CE为1寸,AB为10寸,求直径CD的长依题意,CD长为()A寸B13寸C25寸D26
3、寸5、以原点O为圆心的圆交x轴于A、B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若DAB25,则OCD()A50B40C70D306、如图,、分别切于点、,点为优弧上一点,若,则的度数为()ABCD7、如图,五边形是O的内接正五边形,则的度数为()ABCD8、如图,在四边形ABCD中,则AB()A4B5CD9、如图是一圆锥的侧面展开图,其弧长为,则该圆锥的全面积为 A60B85C95D16910、已知中,点P为边AB的中点,以点C为圆心,长度r为半径画圆,使得点A,P在C内,点B在C外,则半径r的取值范围是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20
4、分)1、如图,在甲,以点为圆心,的长为半径作圆,交于点,交于点,阴影部分的面积为_(结果保留)2、如图,O是ABC的外接圆,A60,BC6,则O的半径是_3、如图,已知是的直径,是的切线,连接交于点,连接若,则的度数是_4、在O中,若弦垂直平分半径,则弦所对的圆周角等于_5、如图,已知是的直径,且,弦,点是弧上的点,连接、,若,则的长为_三、解答题(5小题,每小题10分,共计50分)1、已知P为O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若APQ=BPQ(1)如图1,当APQ=45,AP=1,BP=2时,求O的半径。(2)如图2,
5、连接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,设NOP=,OPN=,若AB平行于ON,探究与的数量关系。2、如图,已知的直径为,于点,与相交于点,在上取一点,使得(1)求证:是的切线;(2)填空:当,时,则_连接,当的度数为_时,四边形为正方形3、如图,AB是O的直径,弦CDAB,垂足为E,如果AB10,CD8,求线段AE的长4、在中,已知O经过点C,且与相切于点D(1)在图中作出O;(要求:尺规作图,不写作法,保留作图痕迹)(2)若点D是边上的动点,设O与边、分别相交于点E、F,求的最小值5、如图,分别切、于点、切于点,交于点与不重合)(1)用直尺和圆规作出;(
6、保留作图痕迹,不写作法)(2)若半径为1,求的长-参考答案-一、单选题1、A【解析】【分析】根据圆心角、弧、弦之间的关系即可得出答案【详解】在中,弦弦,则其所对圆心角相等,即,所对优弧和劣弧分别相等,所以有,故B项和C项结论正确,AO=DO=BO=CO(SSS)可得出点到弦,的距离相等,故D项结论正确;而由题意不能推出,故A项结论错误故选:A【考点】此题主要考查圆的基本性质,解题的关键是熟知圆心角、弧、弦之间的关系2、C【解析】【分析】首先求出圆心角EOF的度数,再根据弧长公式,即可解决问题【详解】解:如图连接OE、OF,CD是O的切线,OECD,OED=90,四边形ABCD是平行四边形,C=
7、60,A=C=60,D=120,OA=OF,A=OFA=60,DFO=120,EOF=360-D-DFO-DEO=30,的长故选:C【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式3、D【解析】【分析】【详解】解:如图,CACB,ACB90,ADDB,CDAB,ADECDF90,CDADDB,在ADE和CDF中,ADECDF(SAS),DAEDCF,AEDCEG,ADECGE90,A、C、G、D四点共圆,点G的运动轨迹为弧CD,AB4,ABAC,AC2,OAOC,DADC,OAOC,DOAC,DOC90,点G的运动轨迹的长为故选:D4、D
8、【解析】【分析】连结AO,根据垂径定理可得:,然后设O半径为R,则OER1再由勾股定理,即可求解【详解】解:连结AO, CD为直径,CDAB, 设O半径为R,则OER1RtAOE中,OA2AE2+OE2, R252+(R-1)2,R13,CD2R26(寸)故选:D【考点】本题主要考查了垂径定理,勾股定理,熟练掌握垂径定理是解题的关键5、C【解析】【分析】根据圆周角定理求出DOB,根据等腰三角形性质求出OCD=ODC,根据三角形内角和定理求出即可【详解】解:连接OD,DAB=25,BOD=2DAB=50,COD=90-50=40,OC=OD,OCD=ODC=(180-COD)=70,故选:C【考
9、点】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目比较典型,难度适中6、C【解析】【分析】要求ACB的度数,只需根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB;再根据切线的性质以及四边形的内角和定理即可求解【详解】解:连接OA,OB,PA、PB分别切O于点A、B,OAAP,OBBP,PAO=PBO=90,AOB+APB=180,AOB=2ACB,ACB=APB,3ACB=180,ACB=60,故选:C【考点】此题考查了切线的性质,圆周角定理,以及四边形的内角和,熟练掌握切线的性质是解本题的关键7、D【解析】【分析】先根据正五边形的内角和求
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
