2022年北师大版八年级数学上册第一章勾股定理专题攻克试卷(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 北师大 八年 级数 上册 第一章 勾股定理 专题 攻克 试卷 答案 详解
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理专题攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下面各图中,不能证明勾股定理正确性的是()ABCD2、如图,在RtABC中,ACB90, AB5,AC3,点D是
2、BC上一动点,连接AD,将ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当DEB是直角时,DF的长为()A5B3CD3、在直角三角形中,若勾为3,股为4,则弦为()A5B6C7D84、 “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为()A3B4C5D65、如图,长方形中,将此长方形折叠,使点与点重合,折痕为,则的长为()A12B8C10D136、如图,在矩形ABCD中,AB4,BC6,点E为B
3、C的中点,将ABE沿AE折叠,使点B落在矩形内的点F处,连接CF,则CF的长为()ABCD7、如图,P是等边三角形内的一点,且,以为边在外作,连接,则以下结论中不正确的是()ABCD8、以下列各组数的长为边作三角形,不能构成直角三角形的是()A3,4,5B4,5,6C6,8,10D9,12,159、下列各组数:3、4、54、5、62.5、6、6.58、15、17,其中是勾股数的有()A4组B3组C2组D1组10、如图,中,将折叠,使点C与的中点D重合,折痕交于点M,交于点N,则线段的长为().ABC3D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在RtABC中,C9
4、0,AC9,AB15,则点C到AB的距离是_2、如图,在的网格中每个小正方形的边长都为1,的顶点、都在格点上,点为边的中点,则线段的长为_3、九章算术中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B(如图)则芦苇长_尺4、小聪准备测量河水的深度,他把一根竹竿插到离岸边远的水底,竹竿高出水面,把竹竿的顶端拉向岸边,竹竿顶和岸边的水面刚好相齐,则河水的深度为_5、如图,已知
5、,那么数轴上点所表示的数是_三、解答题(5小题,每小题10分,共计50分)1、如图,某港口位于东西方向的海岸线上“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里它们离开港口一个半小时后分别位于点Q,R处,且相距30海里如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?2、如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且,连接DE,DF(1)求证:;(2)连接EF,取EF中点G,连接DG并延长交BC于H,连接BG依题意,补全图形;求证:;若,用等式表示线段BG,HG与AE之间的数量
6、关系,请直接写出结论3、在ABC中,AB15,BC14,AC13,求ABC的面积某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程4、如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即,求这棵树在离地面多高处被折断(即求AC的长度)?5、如图,AD是ABC的中线,DEAC于点E,DF是ABD的中线,且CE=2,DE=4,AE=8(1)求证:;(2)求DF的长-参考答案-一、单选题1、C【解析】【分析】把各图中每一部分的面积和整体的面积分别列式表示,根据每一部分的面积之和等于整体的面积,分别化简,再根据化简结果即可解答.【详解
7、】解:A、+c2+ab(a+b)(a+b),整理得:a2+b2c2,即能证明勾股定理,故本选项不符合题意;B、4 +(ba)2c2,整理得:a2+b2c2,即能证明勾股定理,故本选项不符合题意;C、根据图形不能证明勾股定理,故本选项符合题意;D、4 +c2(a+b)2,整理得:a2+b2c2,即能证明勾股定理,故本选项不符合题意;故选C【考点】本题考查勾股定理的证明,解题的关键是利用构图法来证明勾股定理.2、C【解析】【分析】如图,由题意知,可知三点共线,与重合,在中,由勾股定理得,求的值,设,在中,由勾股定理得,计算求解即可【详解】解:如图,是直角由题意知,三点共线与重合在中,由勾股定理得设
8、,在中,由勾股定理得即解得的长为故选C【考点】本题考查了折叠的性质,勾股定理等知识解题的关键在于明确三点共线,与重合3、A【解析】【分析】直接根据勾股定理求解即可【详解】解:在直角三角形中,勾为3,股为4,弦为,故选A【考点】本题考查了勾股定理,熟练掌握勾股定理是解题的关键4、C【解析】【详解】解:如图所示,(a+b)2=21a2+2ab+b2=21,大正方形的面积为13,即:a2+b2=13,2ab=2113=8,小正方形的面积为138=5故选C5、D【解析】【分析】设BE为x,则AE为25-x,在由勾股定理有,即可求得BE=13【详解】设BE为x,则DE为x,AE为25-x四边形为长方形E
9、AB=90在中由勾股定理有即化简得解得故选:D【考点】本题考查了折叠问题求折痕或其他边长,主要可根据折叠前后两图形的全等条件,把某个直角三角形的三边都用同一未知量表示出来,并根据勾股定理建立方程,进而可以求解6、C【解析】【分析】连接BF,(见详解图),由翻折变换可知,BFAE,BE=EF,由点E是BC的中点,可知BE=3,根据勾股定理即可求得AE;根据三角形的面积公式可求得BH,进而可得到BF的长度;结合题意可知FE=BE=EC,进而可得BFC=90,至此,在RtBFC中,利用勾股定理求出CF的长度即可【详解】如图,连接BFAEF是由ABE沿AE折叠得到的,BFAE,BE=EFBC=6,点E
10、为BC的中点,BE=EC=EF=3根据勾股定理有AE=AB+BE代入数据求得AE=5根据三角形的面积公式得BH=即可得BF= 由FE=BE=EC,可得BFC=90再由勾股定理有BC-BF=CF代入数据求得CF= 故答案为:【考点】此题考查矩形的性质和折叠问题,解题关键在于利用好折叠的性质,对应点的连线被折痕垂直平分7、C【解析】【分析】根据ABC是等边三角形,得出ABC=60,根据BQCBPA,得出CBQ=ABP,PB=QB=4,PA=QC=3,BPA=BQC,求出PBQ=60,即可判断A;根据勾股定理的逆定理即可判断B;根据BPQ是等边三角形,PCQ是直角三角形即可判断D;求出APC=150
11、-QPC,和PC2QC,可得QPC30,即可判断C【详解】解:ABC是等边三角形,ABC=60,BQCBPA,CBQ=ABP,PB=QB=4,PA=QC=3,BPA=BQC,PBQ=PBC+CBQ=PBC+ABP=ABC=60,所以A正确,不符合题意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,PQ2+QC2=PC2,PQC=90,所以B正确,不符合题意;PB=QB=4,PBQ=60,BPQ是等边三角形,BPQ=60,APB=BQC=BQP+PQC=60+90=150,所以D正确,不符合题意;APC=360-150-60-QPC=150-QPC,PC=5,QC=PA=
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
