分享
分享赚钱 收藏 举报 版权申诉 / 23

类型2022年最新人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(解析版).docx

  • 上传人:a****
  • 文档编号:706658
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:23
  • 大小:465.35KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年最新人教版九年级数学上册期中专项测评试题 卷解析版 2022 新人 九年级 数学 上册 期中 专项 测评 试题 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、关于x的一元二次方程根的情况,下列说法正确的是()A有两个不相等的

    2、实数根B有两个相等的实数根C无实数根D无法确定2、二次函数的图象的对称轴是()ABCD3、关于函数,下列说法:函数的最小值为1;函数图象的对称轴为直线x3;当x0时,y随x的增大而增大;当x0时,y随x的增大而减小,其中正确的有()个A1B2C3D44、关于x的方程x24kx2k24的一个解是2,则k值为()A2或4B0或4C2或0D2或25、一元二次方程,用配方法解该方程,配方后的方程为( )ABCD二、多选题(5小题,每小题4分,共计20分)1、如图是抛物线y1ax2+bx+c(a0)图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点B(4,0),直线y2mx+n(m0)与抛物

    3、线交于A,B两点,下列结论中正确的是()A2a+b0Bm+n3C抛物线与x轴的另一个交点是(1,0)D方程ax2+bx+c3有两个相等的实数根E当1x4时,有y2y12、二次函数的图像如图所示,下列结论中正确的是()ABC抛物线与x轴的另一个交点为D3、下列关于x的方程的说法正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 A一定有两个实数根B可能只有一个实数根C可能无实数根D当时,方程有两个负实数根4、下列关于x的方程没有实数根的是()Ax2-x10Bx2x10C(x-1)(x2)0D(x-1)2105、关于的方程有两个不相等的实数根,则下列结论一定正确的是()A,BCD当时,第卷

    4、(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知方程的一根为,则方程的另一根为_2、若某二次函数图象的形状与抛物线y3x2相同,且顶点坐标为(0,2),则它的表达式为_3、抛物线的开口方向向_4、已知抛物线与x轴的一个交点为,则代数式的值为_5、如图,在RtABC中,C=90,AC=8cm,BC=2cm,点P在边AC上,以2cm/s的速度从点A向点C移动,点Q在边CB上,以1cm/s的速度从点C向点B移动点P、Q同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,当PQC的面积为3cm2时,P、Q运动的时间是_秒四、解答题(5小题,每小题8分,共计40分)1、在

    5、平面直角坐标系中,抛物线交x轴于点,过点B的直线交抛物线于点C(1)求该抛物线的函数表达式;(2) 若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求面积的最大值;(3)若点M在抛物线上,将线段OM绕点O旋转90,得到线段ON,是否存在点M,使点N恰好落在直线BC上?若存在,请直接写出点M的坐标;若不存在,请说明理由2、已知关于的一元二次方程有实数根.(1)求的取值范围.(2)若该方程的两个实数根为、,且,求的值.3、用适当的方法解方程:(1)(1-x)2-2(x-1)-350;(2)x2+4x-204、在平面直角坐标系中,抛物线的对称轴为 线 封 密 内 号学级年名姓 线 封

    6、密 外 求的值及抛物线与轴的交点坐标;若抛物线与轴有交点,且交点都在点,之间,求的取值范围5、如图,矩形ABCD中,AB=6cm,BC=12cm. 点M从点A开始沿AB边向点B以1cm/秒的速度向B点移动,点N从点B开始沿BC边以2cm/秒的速度向点C移动. 若M, N分别从A, B点同时出发,设移动时间为t (0t6),DMN的面积为S. (1) 求S关于t的函数关系式,并求出S的最小值;(2) 当DMN为直角三角形时,求DMN的面积.-参考答案-一、单选题1、A【解析】【分析】先计算判别式,再进行配方得到=(k-1)2+4,然后根据非负数的性质得到0,再利用判别式的意义即可得到方程总有两个

    7、不相等的实数根【详解】=(k-3)2-4(1-k)=k2-6k+9-4+4k=k2-2k+5=(k-1)2+4,(k-1)2+40,即0,方程总有两个不相等的实数根故选:A【考点】本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根上面的结论反过来也成立2、A【解析】【分析】将二次函数写成顶点式,进而可得对称轴【详解】解:二次函数的图象的对称轴是故选A【考点】本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外

    8、3、B【解析】【分析】根据所给函数的顶点式得出函数图象的性质从而判断选项的正确性【详解】解:,该函数图象开口向上,有最小值1,故正确;函数图象的对称轴为直线,故错误;当x0时,y随x的增大而增大,故正确;当x3时,y随x的增大而减小,当3x0时,y随x的增大而增大,故错误故选:B【考点】本题考查二次函数的性质,解题的关键是能够根据函数解析式分析出函数图象的性质4、B【解析】【分析】把x=-2代入方程即可求得k的值;【详解】解:将x=-2代入原方程得到:,解关于k的一元二次方程得:k=0或4,故选:B【考点】此题主要考查了解一元二次方程相关知识点,代入解求值是关键5、D【解析】【分析】按照配方法

    9、的步骤,移项,配方,配一次项系数一半的平方.【详解】x22xm=0,x22x=m,x22x+1=m+1,(x1)2=m+1故选D【考点】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用二、多选题1、ABD【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可【详解】解:A、抛物线对称轴为直线, 线 封 密 内 号学级年名姓 线 封 密 外 ,故A正确;B、直线y2mx+n(m0)与抛物线交于A,B两点,当时,故B正确;C、抛物线与x轴的一个交点为,对称轴为,抛物线与x轴的另一个交点是,故C错误;D、方程ax2+bx+c3从函数角度可以看作是y1a

    10、x2+bx+c与直线求交点,从图像可以知道,抛物线顶点为,从抛物线与直线有且只有一个交点,故方程ax2+bx+c3有两个相等的实数根,故D正确;E、由图像可知,当时,故E错误;故选:ABD【点睛】本题考查了二次函数的性质、方程与二次函数的关系、函数与不等式的关系等知识,解答关键是数形结合2、AD【解析】【分析】根据抛物线的对称轴为直线,则可对A进行判断;利用,函数值为负,可对B进行判断;通过求点关于直线的对称点,可对C进行判断;由抛物线开口向上得到,则,再由抛物线与轴的交点在轴下方得到,即可对D进行判断【详解】解:A、抛物线的对称轴为直线,即,选项说法正确,符合题意;B、由抛物线的对称性可,知

    11、时,即,选项说法错误,不符合题意;C、点关于直线的对称点,抛物线与x轴的另一个交点为,选项说法错误,不符合题意;D、抛物线开口向上,又抛物线与轴的交点在轴下方,选项说法正确,符合题意;故选AD【点睛】本题考查了二次函数的图像与性质,解题的关键是熟练运用二次函数的图像与系数的关系3、BD【解析】【分析】直接利用方程根与系数的关系以及根的判别式分析求出即可【详解】解:当a=0时,方程整理为解得, 选项B正确;故选项A错误;当时,方程是一元二次方程, 线 封 密 内 号学级年名姓 线 封 密 外 此时的方程表两个不相等的实数根,故选项C错误;若时, ,当时,方程有两个负实数根选项D正确,故选:BD【

    12、点睛】此题主要考查了一元二次方程根的判别式和根与系数的关系,正确把握相关知识是解题关键4、ABD【解析】【分析】将选项中的式子转换为一元二次方程一般式,根据根的判别式可得结果【详解】解:A、x2-x10,方程没有实数根,此选项符合题意;B、x2x10,方程没有实数根,此选项符合题意;C、(x-1)(x2)0,方程有实数根,此选项不符合题意;D、原式整理为:,方程没有实数根,此选项符合题意;故选:ABD【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程无实数根5、BCD【解析】【分析】根据已知条件可知只有当时,选项

    13、A才成立;将原式整理为一元二次方程的一般式,根据关于的方程有两个不相等的实数根运用根的判别式可判断B选项;运用根于系数的关系可判断选项C;运用求根公式可判断选项D【详解】解:整理为,A、当时,的解为,故选项A不符合题意;B、关于的方程有两个不相等的实数根,即,解得:;故选项B符合题意;C、根据根于系数的关系可得:,选项C符合题意;D、当时,当时, 线 封 密 内 号学级年名姓 线 封 密 外 故选项D符合题意;故选:BCD【点睛】本题主要考查一元二次方程根的判别式,根与系数的关系,一元二次方程的解等知识点,熟知根的判别式以及根与系数的关系是解题的关键三、填空题1、【解析】【分析】设方程的另一个

    14、根为c,再根据根与系数的关系即可得出结论【详解】解:设方程的另一个根为c,故答案为【考点】本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键2、y3x22或y3x22【解析】【分析】根据二次函数的图象特点即可分类求解【详解】二次函数的图象与抛物线y3x2的形状相同,说明它们的二次项系数的绝对值相等,故本题有两种可能,即y3x22或y3x22故答案为y3x22或y3x22【考点】此题主要考查二次函数的图象,解题的关键是熟知二次函数形状相同,二次项系数的绝对值相等3、下【解析】【分析】根据二次函数二次项系数的大小判断即可;【详解】,抛物线开口向下;故答案是下【考点】本题主要

    15、考查了判断抛物线的开口方向,准确分析判断是解题的关键4、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,m2-m=1, 线 封 密 内 号学级年名姓 线 封 密 外 -3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019故答案为:2019【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值5、1【解析】【分析】设P、Q运动的时间是秒,根据已知条件得到cm,cm ,则cm ,根据三角形面积公式列出方程,解方程

    16、即可求解【详解】解:设P、Q运动的时间是秒,则cm,cm ,cmPQC的面积为3cm2,即,解得或(不合题意,舍去),当PQC的面积为3cm2时,P、Q运动的时间是1秒故答案为:1【考点】本题考查了一元二次方程应用动点问题,三角形的面积,正确的理解题意是解题的关键四、解答题1、(1);(2);(3)存在,或 或或【解析】【分析】(1)将A、B两点的坐标分别代入抛物线的解析式中,得关于a、b的二元一次方程组,解方程组即可求得a、b,从而可求得抛物线的函数解析式;(2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,则有,设,则可得E点坐标,从而可分别求得PE、DE,从而求得PE

    17、,解由二次函数与一次函数组成的方程组,可求得点C的坐标,进而求得PBC的面积关于m的函数,求出函数的最值即可;(3)设点M的坐标为(p,q),分别求出直线OM、ON的解析式,再求得ON与直线的交点N的坐标,根据OM=ON,即可求出p与q的值,从而求得点M的坐标【详解】(1)将点,代入中,得:解得该抛物线表达式为 (2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,如图 线 封 密 内 号学级年名姓 线 封 密 外 设点,则点点P、E均位于直线的下方P、E两点的纵坐标均为负,点C的坐标为方程组的一个解解这个方程组,得,点B坐标为点C的横坐标为(其中)这个二次函数有最大值,且当

    18、时,的最大值为(3)存在设M(p,q),其中,且p0, 则直线OM的解析式为:由于ONOM,则直线ON的解析式为: 解方程组 ,得, 即点N的坐标为 ,且OM=ON 即 或把代入两式中并整理,得: 或 线 封 密 内 号学级年名姓 线 封 密 外 解方程得: , (舍去)当时,;当时,;当时,故点M的坐标分别为:或或当p=0时,则q=3,即M(0,3),而,且OMOB即此时点M也满足题意 综上所述,满足题意的点M的坐标为或或或【点睛】本题是二次函数的压轴题,也是中考常考题型,它考查了待定系数法求二次数解析式,二次函数的图象,求二次函数的最值,平面直角坐标系中图象旋转问题,解方程组,勾股定理等知

    19、识,运算量较大,这对学生的运算能力提出了更高的要求;求三角形面积时用到图形的割补方法,这是在平面直角坐标系中求图象面积常用的方法2、(1).(2).【解析】【分析】(1)根据方程的系数结合根的判别式0,即可得出关于m的一元一次不等式,解之即可得出m的取值范围;(2)由根与系数的关系可得出x1+x2=6,x1x2=4m+1,结合|x1-x2|=4可得出关于m的一元一次方程,解之即可得出m的值【详解】(1)关于x的一元二次方程x2-6x+(4m+1)=0有实数根,=(-6)2-41(4m+1)0,解得:m2;(2)方程x2-6x+(4m+1)=0的两个实数根为x1、x2,x1+x2=6,x1x2=

    20、4m+1,(x1-x2)2=(x1+x2)2-4x1x2=42,即32-16m=16,解得:m=1【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当0时,方程有实数根”;(2)利用根与系数的关系结合|x1-x2|=4,找出关于m的一元一次方程3、 (1)x18,x2-4(2)x1-2,x2-2【解析】【分析】(1)用分解因式的方法解答,分解因式用十字相乘法分解;(2)用配方法解答,配方前先把-2移项,而后配方,等号左右斗殴配上一次项系数一半的平方(1)原方程可变形为(x-1-7)(x-1+5)0,x-80或x+40,x18,x2-4;(2)移项,得x2+4x2,配方,

    21、得x2+4x+46,即(x+2)26,两边开平方,得x+2,x1-2,x2-2【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了用适当方法解一元二次方程,解决问题的关键是先考虑直接开平方法分解因式法,而后再考虑配方法或公式法4、 (1) a=-1;坐标为,;(2).【解析】【分析】(1)利用抛物线的对称轴方程得到x=-=-1,解方程求出a即可得到抛物线的解析式为y=-x2-2x;然后解方程-x2-2x=0可得到抛物线与x轴的交点坐标;(2)抛物线y=-x2-2x+m由抛物线y=-x2-2x上下平移|m|和单位得到,利用函数图象可得到当x=1时,y0,即-1-2+m0;当x=-1

    22、时,y0,即-1+2+m0,然后解两个不等式求出它们的公共部分可得到m的范围【详解】根据题意得,解得,所以抛物线的解析式为,当时,解得,所以抛物线与轴的交点坐标为,;抛物线抛物线由抛物线上下平移和单位得到,而抛物线的对称轴为直线,抛物线与轴的交点都在点,之间,当时,即,解得;当时,即,解得,的取值范围为【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数图象的几何变换5、(1)27(2) 【解析】【分析】(1)根据t秒时,M、N两点的运动路程,分别表示出AM、BM、BN、CN的长度,由S

    23、DMN=S矩形ABCDSADMSBMNSCDN进行列式即可得到S关于t的函数关系式,通过配方即可求得最小值;(2)当DMN为直角三角形时,由MDN90,分NMD或MND为90两种情况进行求解即可得.【详解】(1) 由题意,得AM=tcm,BN=2tcm,则BM=(6t)cm,CN=(122t)cm,SDMN=S矩形ABCDSADMSBMNSCDN,S=12612t(6t)2t6(122t)=t26t+36=(t3)2+27,t=3在范围0t6内,S的最小值为27cm2;(2) 当DMN为直角三角形时,MDN90,可能NMD或MND为90,当NMD=90时,DN2=DM2+MN2,(122t)2+62=122+t2+(6t)2+(2t)2,解得t=0或18,不在范围0t6内,不可能;当MND=90时,DM2=DN2+MN2,122+t2=(122t)2+62+(6t)2+(2t)2,解得t=或6,(6不在范围0t6内舍),S=(3)2+27=cm2. 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了二次函数的应用,涉及矩形的性质、三角形面积、二次函数的性质、勾股定理的应用等知识,熟练掌握和灵活应用相关知识是解题的关键.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年最新人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-706658.html
    相关资源 更多
  • 人教版七年级生物上册教学设计:第一单元 生物和生物圈 第一章 认识生物》第一节 生物的特征.docx人教版七年级生物上册教学设计:第一单元 生物和生物圈 第一章 认识生物》第一节 生物的特征.docx
  • 人教版七年级生物上册导学案:第一单元 生物和生物圈 第一章 认识生物》第一节 生物的特征(无答案).docx人教版七年级生物上册导学案:第一单元 生物和生物圈 第一章 认识生物》第一节 生物的特征(无答案).docx
  • 人教版七年级生物上册同步练习:第二单元 第一章第一节 练习使用显微镜.docx人教版七年级生物上册同步练习:第二单元 第一章第一节 练习使用显微镜.docx
  • 人教版七年级生物上册同步练习:2.1.1练习使用显微镜.docx人教版七年级生物上册同步练习:2.1.1练习使用显微镜.docx
  • 人教版七年级生物上册同步练习:1.2.2生物与环境组成生态系统.docx人教版七年级生物上册同步练习:1.2.2生物与环境组成生态系统.docx
  • 人教版七年级生物上册同步练习1.1.2调查周边环境中的生物.docx人教版七年级生物上册同步练习1.1.2调查周边环境中的生物.docx
  • 人教版七年级生物上册3.5.2绿色植物的呼吸作用练习(含解析).docx人教版七年级生物上册3.5.2绿色植物的呼吸作用练习(含解析).docx
  • 人教版七年级生物上册3.5.2绿色植物的呼吸作用导学案(无答案).docx人教版七年级生物上册3.5.2绿色植物的呼吸作用导学案(无答案).docx
  • 人教版七年级生物上册3.5.1光合作用吸收二氧化碳释放氧气练习(含解析).docx人教版七年级生物上册3.5.1光合作用吸收二氧化碳释放氧气练习(含解析).docx
  • 人教版七年级生物上册3.5.1光合作用吸收二氧化碳释放氧气导学案(无答案).docx人教版七年级生物上册3.5.1光合作用吸收二氧化碳释放氧气导学案(无答案).docx
  • 人教版七年级生物上册3.4绿色植物是生物圈中有机物的制造者练习(含解析).docx人教版七年级生物上册3.4绿色植物是生物圈中有机物的制造者练习(含解析).docx
  • 人教版七年级生物上册3.4绿色植物是生物圈中有机物的制造者导学案(无答案).docx人教版七年级生物上册3.4绿色植物是生物圈中有机物的制造者导学案(无答案).docx
  • 人教版七年级生物上册3.3绿色植物与生物圈的水循环练习(含解析).docx人教版七年级生物上册3.3绿色植物与生物圈的水循环练习(含解析).docx
  • 人教版七年级生物上册3.2.3开花和结果导学案(无答案).docx人教版七年级生物上册3.2.3开花和结果导学案(无答案).docx
  • 人教版七年级生物上册3.2.3 开花和结果练习(含解析)教师用卷.docx人教版七年级生物上册3.2.3 开花和结果练习(含解析)教师用卷.docx
  • 人教版七年级生物上册3.2.2植株的生长导学案(无答案).docx人教版七年级生物上册3.2.2植株的生长导学案(无答案).docx
  • 人教版七年级生物上册3.2.1种子的萌发导学案(无答案).docx人教版七年级生物上册3.2.1种子的萌发导学案(无答案).docx
  • 人教版七年级生物上册3.1.2种子植物练习(含解析)教师用卷.docx人教版七年级生物上册3.1.2种子植物练习(含解析)教师用卷.docx
  • 人教版七年级生物上册3.1.1藻类蕨类苔藓植物同步练习.docx人教版七年级生物上册3.1.1藻类蕨类苔藓植物同步练习.docx
  • 人教版七年级生物上册3.1.1藻类、苔藓和蕨类植物导学案(无答案).docx人教版七年级生物上册3.1.1藻类、苔藓和蕨类植物导学案(无答案).docx
  • 人教版七年级生物上册2.2.3植物体的结构层次导学案(无答案).docx人教版七年级生物上册2.2.3植物体的结构层次导学案(无答案).docx
  • 人教版七年级生物上册2.2.2动物体的结构层次同步练习.docx人教版七年级生物上册2.2.2动物体的结构层次同步练习.docx
  • 人教版七年级生物上册2.1.3第三节 观察动物细胞 教学设计.docx人教版七年级生物上册2.1.3第三节 观察动物细胞 教学设计.docx
  • 人教版七年级生物上册2.1.3 动物细胞练习(含解析)教师用卷.docx人教版七年级生物上册2.1.3 动物细胞练习(含解析)教师用卷.docx
  • 人教版七年级生物上册2.1.1 练习使用显微镜练习(含解析)教师用卷.docx人教版七年级生物上册2.1.1 练习使用显微镜练习(含解析)教师用卷.docx
  • 人教版七年级生物上册1.2.3生物圈是最大的生态系统导学案(无答案).docx人教版七年级生物上册1.2.3生物圈是最大的生态系统导学案(无答案).docx
  • 人教版七年级生物上册1.2.2生物与环境组成生态系统练习(含解析)教师用卷.docx人教版七年级生物上册1.2.2生物与环境组成生态系统练习(含解析)教师用卷.docx
  • 人教版七年级生物上册1.1.1生物的特征练习(含解析)教师用卷.docx人教版七年级生物上册1.1.1生物的特征练习(含解析)教师用卷.docx
  • 人教版七年级生物上册2.1.3第三节 观察动物细胞 教学设计.docx人教版七年级生物上册2.1.3第三节 观察动物细胞 教学设计.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1