分享
分享赚钱 收藏 举报 版权申诉 / 7

类型2022年高考数学一轮复习 考点规范练16 导数的综合应用(含解析)新人教A版(文).docx

  • 上传人:a****
  • 文档编号:716945
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:7
  • 大小:33.38KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年高考数学一轮复习 考点规范练16 导数的综合应用含解析新人教A版文 2022 年高 数学 一轮 复习 考点 规范 16 导数 综合 应用 解析 新人
    资源描述:

    1、考点规范练16导数的综合应用基础巩固1.已知函数f(x)=x3+ax2+bx+c在x=-23与x=1处都取得极值.(1)求a,b的值及函数f(x)的单调区间;(2)若对于x-1,2,不等式f(x)c2恒成立,求c的取值范围.解:(1)f(x)=x3+ax2+bx+c,f(x)=3x2+2ax+b.又f(x)在x=-23与x=1处都取得极值,f-23=129-43a+b=0,f(1)=3+2a+b=0,两式联立解得a=-12,b=-2,f(x)=x3-12x2-2x+c,f(x)=3x2-x-2=(3x+2)(x-1),令f(x)=0,得x1=-23,x2=1,当x变化时,f(x),f(x)的变

    2、化情况如下表:x-,-23-23-23,11(1,+)f(x)+0-0+f(x)极大值极小值函数f(x)的递增区间为-,-23与(1,+);递减区间为-23,1.(2)f(x)=x3-12x2-2x+c,x-1,2,当x=-23时,f-23=2227+c为极大值,而f(2)=2+c,则f(2)=2+c为最大值,要使f(x)f(2)=2+c,解得c2.c的取值范围为(-,-1)(2,+).2.设函数f(x)=ax2-a-ln x,g(x)=1x-eex,其中aR,e=2.718为自然对数的底数.(1)讨论f(x)的单调性;(2)证明:当x1时,g(x)0;(3)确定a的所有可能取值,使得f(x)

    3、g(x)在区间(1,+)内恒成立.答案:(1)解f(x)=2ax-1x=2ax2-1x(x0).当a0时,f(x)0时,由f(x)=0有x=12a.当x0,12a时,f(x)0,f(x)单调递增.(2)证明令s(x)=ex-1-x,则s(x)=ex-1-1.当x1时,s(x)0,所以ex-1x,从而g(x)=1x-1ex-10.(3)解由(2),当x1时,g(x)0.当a0,x1时,f(x)=a(x2-1)-lnxg(x)在区间(1,+)内恒成立时,必有a0.当0a1.由(1)有f12a0,所以此时f(x)g(x)在区间(1,+)内不恒成立.当a12时,令h(x)=f(x)-g(x)(x1).

    4、当x1时,h(x)=2ax-1x+1x2-e1-xx-1x+1x2-1x=x3-2x+1x2x2-2x+1x20.因此,h(x)在区间(1,+)内单调递增.又因为h(1)=0,所以当x1时,h(x)=f(x)-g(x)0,即f(x)g(x)恒成立.综上,a12,+.3.已知函数f(x)=(x-k)ex+k,kZ.(1)当k=0时,求函数f(x)的单调区间;(2)若当x(0,+)时,不等式f(x)+50恒成立,求k的最大值.解:(1)当k=0时,f(x)=xex,f(x)=ex+xex=ex(x+1),当x(-,-1)时,f(x)0;f(x)在区间(-,-1)内是减函数,在区间(-1,+)内是增

    5、函数.(2)不等式f(x)+50恒成立(x-k)ex+k+50在x(0,+)时恒成立,令F(x)=(x-k)ex+k+5,F(x)=ex(x-k+1)(xR),当x(-,k-1)时,f(x)0;f(x)在区间(-,k-1)内是减函数,在区间(k-1,+)内是增函数.若k-10,即k1,当x(0,+)时,F(x)F(0)0.而F(0)=50恒成立,k1符合题意.若k-10,即k1,当x(0,+)时,只需F(x)min=F(k-1)=-ek-1+5+k0即可.令h(k)=-ek-1+5+k,h(k)=1-ek-10,h(3)=-e2+80,h(4)=-e3+90,1k3,综上,k的最大值为3.4.

    6、已知函数f(x)=ln x+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a0,故f(x)在区间(0,+)单调递增.若a0;当x-12a,+时,f(x)0.故f(x)在区间0,-12a内单调递增,在区间-12a,+内单调递减.(2)证明由(1)知,当a0;当x(1,+)时,g(x)0时,g(x)0.从而当a0时,ln-12a+12a+10,即f(x)-34a-2.能力提升5.设函数f(x)=(1-x2)ex.(1)讨论f(x)的单调性;(2)当x0时,f(x)ax+1,求a的取值范围.解:(1)f(x)=(1-2x-x2)ex.令f(x)=0得x=-1-2,x=-1+2.当x(-

    7、,-1-2)时,f(x)0;当x(-1+2,+)时,f(x)0.所以f(x)在区间(-,-1-2),(-1+2,+)内单调递减,在区间(-1-2,-1+2)内单调递增.(2)f(x)=(1+x)(1-x)ex.当a1时,设函数h(x)=(1-x)ex,h(x)=-xex0),因此h(x)在区间0,+)内单调递减,而h(0)=1,故h(x)1,所以f(x)=(x+1)h(x)x+1ax+1.当0a0(x0),所以g(x)在区间0,+)内单调递增,而g(0)=0,故exx+1.当0x(1-x)(1+x)2,(1-x)(1+x)2-ax-1=x(1-a-x-x2),取x0=5-4a-12,则x0(0

    8、,1),(1-x0)(1+x0)2-ax0-1=0,故f(x0)ax0+1.当a0时,取x0=5-12,则x0(0,1),f(x0)(1-x0)(1+x0)2=1ax0+1.综上,a的取值范围是1,+).6.已知函数f(x)=(x-1)ln x-x-1.证明:(1)f(x)存在唯一的极值点;(2)f(x)=0有且仅有两个实根,且两个实根互为倒数.答案:证明(1)f(x)的定义域为(0,+).f(x)=x-1x+lnx-1=lnx-1x.因为y=lnx单调递增,y=1x单调递减,所以f(x)单调递增.又f(1)=-10,故存在唯一x0(1,2),使得f(x0)=0.又当xx0时,f(x)x0时,

    9、f(x)0,f(x)单调递增.因此,f(x)存在唯一的极值点.(2)由(1)知f(x0)0,所以f(x)=0在区间(x0,+)内存在唯一根x=.由x01得11x0.又f1=1-1ln1-1-1=f()=0,故1是f(x)=0在(0,x0)的唯一根.综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.7.(2020全国,文20)已知函数f(x)=x3-kx+k2.(1)讨论f(x)的单调性;(2)若f(x)有三个零点,求k的取值范围.解:(1)f(x)=3x2-k.当k=0时,f(x)=x3,故f(x)在(-,+)单调递增;当k0,故f(x)在(-,+)单调递增.当k0时,令f(x)=0,得

    10、x=3k3.当x-,-3k3时,f(x)0;当x-3k3,3k3时,f(x)0.故f(x)在-,3k3,3k3,+单调递增,在3k3,3k3单调递减.(2)由(1)知,当k0时,f(x)在(-,+)单调递增,f(x)不可能有三个零点.当k0时,x=-3k3为f(x)的极大值点,x=3k3为f(x)的极小值点.此时,-k-1-3k33k3k+1且f(-k-1)0,f-3k30.根据f(x)的单调性,当且仅当f3k30,即k2-2k3k90时,f(x)有三个零点,解得k427.因此k的取值范围为0,427.高考预测8.已知函数f(x)=x(ln x-ax)(aR).(1)若a=1,求函数f(x)的

    11、图象在点(1,f(1)处的切线方程;(2)若函数f(x)有两个极值点x1,x2,且x1-12.答案:(1)解由已知,f(x)=x(lnx-x),当x=1时,f(x)=-1,f(x)=lnx+1-2x,当x=1时,f(x)=-1,所以所求切线方程为x+y=0.(2)证明由已知可得f(x)=lnx+1-2ax=0有两个相异实根x1,x2,令h(x)=f(x),则h(x)=1x-2a,若a0,则h(x)0,h(x)单调递增,f(x)=0不可能有两根;若a0,令h(x)=0得x=12a,可知h(x)在区间0,12a内单调递增,在区间12a,+内单调递减,令f12a0,解得0a12,由1e12a有f1e=-2ae12a有f1a2=-2lna+1-2a0,从而当0a0,所以x11f(1)=-a-12.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年高考数学一轮复习 考点规范练16 导数的综合应用(含解析)新人教A版(文).docx
    链接地址:https://www.ketangku.com/wenku/file-716945.html
    相关资源 更多
  • 人教版数学二年级上册重点题型专项练习(满分必刷).docx人教版数学二年级上册重点题型专项练习(满分必刷).docx
  • 人教版数学二年级上册重点题型专项练习(有一套).docx人教版数学二年级上册重点题型专项练习(有一套).docx
  • 人教版数学二年级上册重点题型专项练习(易错题).docx人教版数学二年级上册重点题型专项练习(易错题).docx
  • 人教版数学二年级上册重点题型专项练习(必刷)word版.docx人教版数学二年级上册重点题型专项练习(必刷)word版.docx
  • 人教版数学二年级上册重点题型专项练习(实验班).docx人教版数学二年级上册重点题型专项练习(实验班).docx
  • 人教版数学二年级上册重点题型专项练习(实用).docx人教版数学二年级上册重点题型专项练习(实用).docx
  • 人教版数学二年级上册重点题型专项练习(完整版)word版.docx人教版数学二年级上册重点题型专项练习(完整版)word版.docx
  • 人教版数学二年级上册重点题型专项练习(完整版).docx人教版数学二年级上册重点题型专项练习(完整版).docx
  • 人教版数学二年级上册重点题型专项练习(夺分金卷).docx人教版数学二年级上册重点题型专项练习(夺分金卷).docx
  • 人教版数学二年级上册重点题型专项练习(夺冠)word版.docx人教版数学二年级上册重点题型专项练习(夺冠)word版.docx
  • 人教版数学二年级上册重点题型专项练习(夺冠).docx人教版数学二年级上册重点题型专项练习(夺冠).docx
  • 人教版数学二年级上册重点题型专项练习(夺冠系列)word版.docx人教版数学二年级上册重点题型专项练习(夺冠系列)word版.docx
  • 人教版数学二年级上册重点题型专项练习(基础题).docx人教版数学二年级上册重点题型专项练习(基础题).docx
  • 人教版数学二年级上册重点题型专项练习(培优B卷).docx人教版数学二年级上册重点题型专项练习(培优B卷).docx
  • 人教版数学二年级上册重点题型专项练习(培优A卷).docx人教版数学二年级上册重点题型专项练习(培优A卷).docx
  • 人教版数学二年级上册重点题型专项练习(名师系列)word版.docx人教版数学二年级上册重点题型专项练习(名师系列)word版.docx
  • 人教版数学二年级上册重点题型专项练习(典型题).docx人教版数学二年级上册重点题型专项练习(典型题).docx
  • 人教版数学二年级上册重点题型专项练习(全国通用).docx人教版数学二年级上册重点题型专项练习(全国通用).docx
  • 人教版数学二年级上册重点题型专项练习(word).docx人教版数学二年级上册重点题型专项练习(word).docx
  • 人教版数学二年级上册重点题型专项练习(A卷)word版.docx人教版数学二年级上册重点题型专项练习(A卷)word版.docx
  • 人教版数学二年级上册重点题型专项练习(A卷).docx人教版数学二年级上册重点题型专项练习(A卷).docx
  • 人教版数学二年级上册重点题型专项练习附解析答案.docx人教版数学二年级上册重点题型专项练习附解析答案.docx
  • 人教版数学二年级上册重点题型专项练习附答案(轻巧夺冠).docx人教版数学二年级上册重点题型专项练习附答案(轻巧夺冠).docx
  • 人教版数学二年级上册重点题型专项练习附答案(综合题).docx人教版数学二年级上册重点题型专项练习附答案(综合题).docx
  • 人教版数学二年级上册重点题型专项练习附答案(突破训练).docx人教版数学二年级上册重点题型专项练习附答案(突破训练).docx
  • 人教版数学二年级上册重点题型专项练习附答案(巩固).docx人教版数学二年级上册重点题型专项练习附答案(巩固).docx
  • 人教版数学二年级上册重点题型专项练习附答案(完整版).docx人教版数学二年级上册重点题型专项练习附答案(完整版).docx
  • 人教版数学二年级上册重点题型专项练习附答案(夺分金卷).docx人教版数学二年级上册重点题型专项练习附答案(夺分金卷).docx
  • 人教版数学二年级上册重点题型专项练习附答案(基础题).docx人教版数学二年级上册重点题型专项练习附答案(基础题).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1