2024年普通高等学校招生“梯期杯”统一考试数学试题.pdf
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2024 普通高等学校 招生 梯期杯 统一 考试 数学试题
- 资源描述:
-
1、T7 UNION绝密启前2024年普通等学校招“梯期杯”统考试 数 学、选择题:本题共 题,每题 分,共 分。在每题给出的四个选项中,只有项是符合题要求的。1.集合,则2.若直线与圆相切,则3.已知向量,若 与 的夹为,则4.若函数单调递增,则 的取值范围为5.如图,概念型超速客机“号”平于地进超低空飞,在冲破障的瞬间形成了爆云(飞器超速飞时形成的形状像是个以物体为中轴、向四周均匀扩散的圆锥状云团),该圆锥状云团的底与地垂直,为,爆云与地接触位置形成的曲线为,的离率为,上距离飞机尾部最近的点到爆云底的距离为,则“号”的飞度为8540M=x 2|sin(x)1N=y|y=x2 2xM N=.C
2、1,0.A 1,2.D 0,2.B 1,0)y=(a 4)x+ax2+y2=16a=.D 6815.A 4.B415.或C 46815a=(2,3)b=(1,1)absin 2=.A526.B 526.C513.D 513f(x)=sin 2x sin x+a xa.B 3316,+).C 3316,+).D 3,+).A 3,+)T 7 OHEEeEhT 7.Ae2 1e(H h).Be2+1e(H h).Ce2 1(H h).De2+1(H h)试卷第 页(共页)112T7 UNION6.个旅团计划前往某个国家旅游,该国有共 个景点供游客选择。团队决定按照以下要求进安排:先选择 个不同的景
3、点作为主要景点,然后在剩下的景点中选择 个不同的作为备选景点。其中、景点不能作为主要景点,景点不能作为备选景点,则不同安排的式共有7.定义:表不超过 的最整数,例如,已知数列满,数列的前 项和为,若,则 的最值为8.设锐的积为,若,则的最值为、选择题:本题共 题,每题 分,共 分。在每题给出的选项中,有多项符合题要求。全部选对的 分,部分选对得 分,有选错的得 分。9.已知复数 为程的个根,则 的可能取值有10.已知随机事件、满,则的充分条件是11.平六体中,外接球半径为,点 满,则12.已知数列满,则下列说法中错误的是A,B,C,D,E,F,G,H832ABC.种D 180.种C 160.种
4、B 90.种A 80 xx1.2=13.1=4ana1=1an=log2(n+1)bn=annSnSn 2024n.A 254.B 314.C 320.D 510 ABCS2S=b2tan B+19 tan A tan C.C 169.A 3.B 94.D 2594520520zz2+2z+2=0z.B 1+i.C 1+i.D 1 i.A 1 iABP(A|B)=P(A|B)P(AB)P(AB).A P(B|A)P(A|B).D P(A|B)P(A).B P(AB)P(A|B)ABCD A1B1C1D14PC1P=PD1.A AC1=BD1.若,则D=2sinB1PD sinA1PD.若,则的
5、最值为32C=1DP B1P.B DP+B1P 8anan+1=an+sin an.对,都有Bm N*am+1 am am1.当()时,存在与正整数 使得Da1 k2 k Za1mam+1+am1=2am.若正整数 满,则Cmam+1+am1 2amam+2+am 0,b 0)F1F2APC2PAF2=PF2APl1F1PF2OOl2l1PF1N|F1F2|NP|=67045体能视视分布极差较差正常较好体能分布极差1011较差021正常28101较好015baab403iii3试卷第 页(共页)312T7 UNION18.(12分)记的内的对边分别为,与相切于点,在上,的延长线与交于 点.(1
6、)若的半径为,求;(2)若,当 最时,求.19.(12分)已知数列的各项均为正数且,.(1)求;(2)求数列的前 项和.20.(12分)在棱台中,为边长为 的正三形,且,点、分别为、的中点,点满.(1)求的正弦值的最值;(2)若,求平与平夹的取值范围.ABCA,B,Ca,b,cA=6AC OCB OAB OD O1BD=3bc=2bBOCana1=22an+1an+(n+2)a 2n=na2n+1an2nannSnABC A1B1C1 A A1C11AB A A1PQA1C1B1C1MMB=B1MA1 AB C1AC=2AB1AB1C1PQM试卷第 页(共页)412B1C1A1ABCQPT7
7、UNION21.(12分)抛物线与 轴负半轴交于点,与 轴正半轴交于点,点 在 上,且点 在 轴上.(1)若,点 在 与 之间运动,求的最值;(2)若点 在抛物线上且在 轴上,过 作的垂线交 于点,证明:,不可能四点共圆.22.(12分)已知函数有且仅有两个零点().(1)求 的取值范围;(2)设,若,求 的取值范围.E:y=x2+mxAxDBEBxm=1BADAB+BDCxBAD+2CAD=2BACEMABMCf(x)=(a x)eax+x+ax1,x2x1 0 an+1an=n+2nanan1 an1an2 an2an3 a4a3 a3a2 a2a1=n+1n 1 nn 2 n 1n 3
8、53 42 31 ana1=(n+1)n2a1=2 an=n(n+1)bn=2nan=n(n+1)2nSn=a1 21+a2 22+a3 23+an2 2n2+an1 2n1+an 2n2Sn=a1 22+a2 23+a3 24+an2 2n1+an1 2n+an 2n+1Sn=2a1 an 2n+1+(a2 a1)22+(a3 a2)23+(an1 an2)2n1+(an an1)2n,dn1=(an an1)2n=n 2n+1dnnTnTn1=2 23+3 24+4 26+(n 2)2n+n 2n+12Tn1=2 24+3 25+4 26+(n 2)2n+(n 1)2n+1+n 2n+2T
9、n1=2 23+24+25+2n+2n+1 n 2n+2=(1 n)2n+2 Tn1=(n 1)2n+2=d1+d2+dn1 Sn=2a1 an 2n+1+(n 1)2n+2=(n2+n 2)2n+1+4 Sn=(n2 n+2)2n+1 4试卷第 页(共页)712T7 UNION20.(1)作且,作且 在上,以为组基底建空间直坐标系,又为中点,设,由棱台:,设(),设,又,又,设的法向量为,的法向量为,由,取,记为,.(2),记为,依题意:,设与的法向量为,取,设与的夹为,又,,AH ABH ABCAG ABCGABC(AH.AB.AG)MBB1PQ=A1B1QM=BC1A(0,0,0)B(0
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
郑州机场候机偶成.pdf
