6.2 等比数列(精讲)(学生版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 6.2 等比数列精讲学生版 等比数列 学生
- 资源描述:
-
1、6.2 等比数列(精讲)一等比数列的概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(显然q0).数学语言表达式:q(n2,q为非零常数).(2)等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.此时G2ab.二等比数列的通项公式若等比数列an的首项为a1,公比是q,则其通项公式为ana1qn1,通项公式的推广:anamqnm.三等比数列的前n项和公式首项为a1,公比为q的等比数列的前n项和Sn四等比数列的性质已知an是等比数列,Sn是数列an的前
2、n项和.1.若klmn(k,l,m,nN*),则有akalaman.2.相隔等距离的项组成的数列仍是等比数列,即ak,akm,ak2m,仍是等比数列,公比为qm.3.若等比数列前n项和为Sn,则Sm,S2m,S2mS3m,S3mS2m仍成等比数列(m为偶数且q1除外)4.若或则等比数列an递增若或则等比数列an递减5.项的个数的“奇偶”性质,在等比数列an中,公比为q若共有2n项,则S偶S奇q;若共有2n1项,则q一 等比数列基本量的运算等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)便可迎刃而解.二等比数列的三种常用判定方法定义法若q(q为非零常数,nN*)
3、或q(q为非零常数且n2,nN*),则an是等比数列中项公式法若数列an中,an0且aanan2(nN*),则an是等比数列通项公式法若数列an的通项公式可写成ancqn1(c,q均为非零常数,nN*),则an是等比数列前n项和公式法若数列an的前n项和Snkqnk(k为非零常数,q0,1),则an是等比数列考法一 等比数列的基本量的运算【例1-1】(2023全国高三专题练习)已知是各项均为正数的等比数列的前n项和,若,则()A21B81C243D729【例1-2】(2022吉林长春市)已知等比数列的前项和为,且公比,则()ABCD【例1-3】(2023四川成都石室中学校考模拟预测)已知数列满
4、足,若,则的值为_.【一隅三反】1(2023全国统考高考真题)设等比数列的各项均为正数,前n项和,若,则()ABC15D402(2023春北京)已知各项均为正数的等比数列满足,则()A2B4C8D163(2022河南安阳)已知为等比数列,则_4(2023全国高三专题练习)已知是等比数列的前项和,若存在,满足,则数列的公比为 AB2CD3考法二 等比数列的判断与证明【例2】(2023广东高三专题练习)在数列中,求证:数列为等比数列,并求数列的通项公式;【一隅三反】1(2023全国高三专题练习)已知数列满足,且,若(1)证明:为等比数列(2)求的通项公式2(2023广东深圳校考一模)已知函数的首项
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
