7-三角恒等变换-五年(2018-2022)高考数学真题按知识点分类汇编.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角 恒等 变换 2018 2022 高考 数学 真题按 知识点 分类 汇编
- 资源描述:
-
1、五年2018-2022高考数学真题按知识点分类汇编7-三角恒等变换(含解析)一、单选题1(2022北京统考高考真题)已知函数,则()A在上单调递减B在上单调递增C在上单调递减D在上单调递增2(2022北京统考高考真题)在中,P为所在平面内的动点,且,则的取值范围是()ABCD3(2022全国统考高考真题)若,则()ABCD4(2021北京统考高考真题)函数是A奇函数,且最大值为2B偶函数,且最大值为2C奇函数,且最大值为D偶函数,且最大值为5(2021全国统考高考真题)()ABCD6(2021浙江统考高考真题)已知是互不相同的锐角,则在三个值中,大于的个数的最大值是()A0B1C2D37(20
2、21全国高考真题)若,则()ABCD8(2021全国统考高考真题)2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影满足,由C点测得B点的仰角为,与的差为100;由B点测得A点的仰角为,则A,C两点到水平面的高度差约为()()A346B373C446D4739(2021全国统考高考真题)函数的最小正周期和最大值分别是()A和B和2C和D和210(2021全国统考高考真题)若,则()ABCD11(2020山东统考高考真题)在中,内角,的
3、对边分别是,若,且 ,则等于()A3BC3或D-3或12(2018全国高考真题)若,则ABCD13(2018全国高考真题)函数的最小正周期为ABCD14(2018全国高考真题)已知函数,则A的最小正周期为,最大值为B的最小正周期为,最大值为C的最小正周期为,最大值为D的最小正周期为,最大值为15(2018全国高考真题)已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,且,则ABCD16(2019全国高考真题)已知 (0,),2sin2=cos2+1,则sin=ABCD二、多选题17(2022全国统考高考真题)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,
4、N两点,且,则C的离心率为()ABCD18(2021全国统考高考真题)已知为坐标原点,点,则()ABCD三、填空题19(2022浙江统考高考真题)若,则_,_20(2020北京统考高考真题)若函数的最大值为2,则常数的一个取值为_21(2018全国高考真题)已知,则_22(2018全国高考真题)已知,则_23(2019江苏高考真题)已知,则的值是_.四、解答题24(2022天津统考高考真题)在中,角A、B、C的对边分别为a,b,c.已知.(1)求的值;(2)求的值;(3)求的值.25(2022北京统考高考真题)在中,(1)求;(2)若,且的面积为,求的周长26(2022全国统考高考真题)记的内
5、角A,B,C的对边分别为a,b,c已知(1)若,求C;(2)证明:27(2021天津统考高考真题)在,角所对的边分别为,已知,(I)求a的值;(II)求的值;(III)求的值28(2021浙江统考高考真题)设函数.(1)求函数的最小正周期;(2)求函数在上的最大值.29(2020浙江统考高考真题)在锐角ABC中,角A,B,C的对边分别为a,b,c,且(I)求角B的大小;(II)求cosA+cosB+cosC的取值范围30(2018北京高考真题)在中,(1)求;(2)求边上的高31(2018浙江高考真题)已知角的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P()()求sin(+)的值
6、;()若角满足sin(+)=,求cos的值32(2018北京高考真题)已知函数.()求的最小正周期; ()若在区间上的最大值为,求的最小值.33(2018江苏高考真题)已知为锐角,(1)求的值;(2)求的值34(2019江苏高考真题)在ABC中,角A,B,C的对边分别为a,b,c(1)若a=3c,b=,cosB=,求c的值;(2)若,求的值35(2019全国高考真题)的内角A,B,C的对边分别为a,b,c,设(1)求A;(2)若,求sinC36(2019全国统考高考真题)的内角的对边分别为,已知(1)求;(2)若为锐角三角形,且,求面积的取值范围37(2019北京高考真题)在ABC中,a=3,
7、bc=2,cosB=()求b,c的值;()求sin(BC)的值38(2019天津高考真题) 在中,内角所对的边分别为.已知,.()求的值;()求的值. 五、双空题39(2022北京统考高考真题)若函数的一个零点为,则_;_参考答案:1C【分析】化简得出,利用余弦型函数的单调性逐项判断可得出合适的选项.【详解】因为.对于A选项,当时,则在上单调递增,A错;对于B选项,当时,则在上不单调,B错;对于C选项,当时,则在上单调递减,C对;对于D选项,当时,则在上不单调,D错.故选:C.2D【分析】依题意建立平面直角坐标系,设,表示出,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;【详解】解
8、:依题意如图建立平面直角坐标系,则,因为,所以在以为圆心,为半径的圆上运动,设,所以,所以,其中,因为,所以,即;故选:D3C【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】方法一:直接法由已知得:,即:,即:所以故选:C方法二:特殊值排除法解法一:设=0则sin +cos =0,取,排除A, B;再取=0则sin +cos= 2sin,取,排除D;选C.方法三:三角恒等变换 所以即故选:C.4D【分析】由函数奇偶性的定义结合三角函数的性质可判断奇偶性;利用二倍角公式结合二次函数的性质可判断最大值.【详解】由题意,所以该函数为偶函数,又,所以当时,取最大值.故选
9、:D.5D【分析】由题意结合诱导公式可得,再由二倍角公式即可得解.【详解】由题意,.故选:D.6C【分析】利用基本不等式或排序不等式得,从而可判断三个代数式不可能均大于,再结合特例可得三式中大于的个数的最大值.【详解】法1:由基本不等式有,同理,故,故不可能均大于.取,则,故三式中大于的个数的最大值为2,故选:C.法2:不妨设,则,由排列不等式可得:,而,故不可能均大于.取,则,故三式中大于的个数的最大值为2,故选:C.【点睛】思路分析:代数式的大小问题,可根据代数式的积的特征选择用基本不等式或拍雪进行放缩,注意根据三角变换的公式特征选择放缩的方向.7A【分析】由二倍角公式可得,再结合已知可求
10、得,利用同角三角函数的基本关系即可求解.【详解】,解得,.故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出.8B【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得,进而得到答案【详解】过作,过作,故,由题,易知为等腰直角三角形,所以所以因为,所以在中,由正弦定理得:,而,所以所以故选:B【点睛】本题关键点在于如何正确将的长度通过作辅助线的方式转化为9C【分析】利用辅助角公式化简,结合三角函数周期性和值域求得函数的最小正周期和最大值.【详解】由题,所以的最小正周期为,最大值为.故选:C10C【分析】将式子先利用二倍角公式和平方关系配
11、方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论11A【分析】利用余弦定理求出,并进一步判断,由正弦定理可得,最后利用两角和的正切公式,即可得到答案;【详解】,故选:A.12B【详解】分析:由公式可得结果.详解:故选B.点睛:本题主要考查二倍角公式,属于基础题.13C【详解】分析:将函数进行化简即可详解:由已知得的最小正周期故选C.点睛:本题主要考查三角函数的化简和最小正周期公式,属于中档题14B【分析】首先利用余弦的倍角公
12、式,对函数解析式进行化简,将解析式化简为,之后应用余弦型函数的性质得到相关的量,从而得到正确选项.【详解】根据题意有,所以函数的最小正周期为,且最大值为,故选B.【点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.15B【分析】首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐
13、标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.16B【分析】利用二倍角公式得到正余弦关系,利用角范围及正余弦平方和为1关系得出答案【详解】,又,又,故选B【点睛】本题为三角函数中二倍角公式、同角三角函数基本关系式的考查,中等难度,判断正余弦正负,运算准确性是关键,题目不难,需细心,解决三角函数问题,研究角的范围后得出三角函数值的正负,很关键,切记不能凭感觉17AC【分析】依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,利用正弦定理结合三角变换、双曲线的定义得到或,即可得解,注意就在双支上还是在单支上分类讨论.【详解】方法一:几何法,双曲线定义
14、的应用情况一M、N在双曲线的同一支,依题意不妨设双曲线焦点在轴,设过作圆的切线切点为B,所以,因为,所以在双曲线的左支, ,设,由即,则,选A情况二若M、N在双曲线的两支,因为,所以在双曲线的右支,所以, ,设,由,即,则,所以,即,所以双曲线的离心率选C方法二:答案回代法特值双曲线,过且与圆相切的一条直线为,两交点都在左支,,则,特值双曲线,过且与圆相切的一条直线为,两交点在左右两支,在右支,则,方法三:依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,若分别在左右支,因为,且,所以在双曲线的右支,又,设,在中,有,故即,所以,而,故,代入整理得到,即,所以双曲线的离心率若均在左支上,同理有
15、,其中为钝角,故,故即,代入,整理得到:,故,故,故选:AC.18AC【分析】A、B写出,、,的坐标,利用坐标公式求模,即可判断正误;C、D根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A:,所以,故,正确;B:,所以,同理,故不一定相等,错误;C:由题意得:,正确;D:由题意得:,故一般来说故错误;故选:AC19 【分析】先通过诱导公式变形,得到的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出,接下来再求【详解】方法一:利用辅助角公式处理,即,即,令,则,即, ,则.故答案为:;.方法二:直接用同角三角函数关系式解方程,即,又,将代入得,解得,
16、则.故答案为:;.20(均可)【分析】根据两角和的正弦公式以及辅助角公式即可求得,可得,即可解出.【详解】因为,所以,解得,故可取.故答案为:(均可).【点睛】本题主要考查两角和的正弦公式,辅助角公式的应用,以及平方关系的应用,考查学生的数学运算能力,属于基础题.21【分析】方法一:利用两角差的正切公式展开,解方程可得.【详解】方法一:直接使用两角差的正切公式展开因为,所以,解之得故答案为:方法二:整体思想两角和的正切公式 故答案为:方法三:换元法两角和的正切公式 令,则,且故答案为:【整体点评】方法一:直接利用两角差的正切公式展开,解方程,思路直接;方法二:利用整体思想利用两角和的正切公式求
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
