《创新设计-课堂讲义》2016-2017学年高中数学(苏教版选修2-2)配套习题:第三章 数系的扩充与复数的引入3-2 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计-课堂讲义
- 资源描述:
-
1、明目标、知重点1.理解复数代数形式的四则运算法则.2.能运用运算法则进行复数的四则运算1复数加法与减法的运算法则(1)设z1abi,z2cdi是任意两个复数,则z1z2(ac)(bd)i,z1z2(ac)(bd)i.(2)对任意z1,z2,z3C,有z1z2z2z1,(z1z2)z3z1(z2z3)2复数的乘法法则设z1abi,z2cdi(a,b,c,dR),则z1z2(abi)(cdi)(acbd)(adbc)i.3复数乘法的运算律对任意复数z1、z2、z3C,有交换律z1z2z2z1结合律(z1z2)z3z1(z2z3)乘法对加法的分配律z1(z2z3)z1z2z1z34.共轭复数把实部相
2、等、虚部互为相反数的两个复数叫做互为共轭复数,复数zabi的共轭复数记作,即abi.5复数的除法法则设z1abi,z2cdi(cdi0),则i.情境导学我们学习过实数的加减运算,复数如何进行加减运算?我们知道向量加法的几何意义,那么复数加法的几何意义是什么呢?探究点一复数加减法的运算思考1我们规定复数的加法法则如下:设z1abi,z2cdi是任意两个复数,那么(abi)(cdi)(ac)(bd)i.那么两个复数的和是个什么数,它的值唯一确定吗?答仍然是个复数,且是一个确定的复数思考2复数加法的实质是什么?类似于实数的哪种运算方法?答实质是实部与实部相加,虚部与虚部相加,类似于实数运算中的合并同
3、类项思考3实数的加法有交换律、结合律,复数的加法满足这些运算律吗?并试着证明答满足,对任意的z1,z2,z3C,有交换律:z1z2z2z1.结合律:(z1z2)z3z1(z2z3)证明:设z1abi,z2cdi,z1z2(ac)(bd)i,z2z1(ca)(db)i,显然,z1z2z2z1,同理可得(z1z2)z3z1(z2z3)思考4类比复数的加法法则,试着给出复数的减法法则答(abi)(cdi)(ac)(bd)i.思考5若复数z1,z2满足z1z20,能否认为z1z2?答不能,如2ii0,但2i与i不能比较大小例1计算:(1)(56i)(2i)(34i);(2)1(ii2)(12i)(12
4、i)解(1)原式(523)(614)i11i.(2)原式1(i1)(12i)(12i)(1111)(122)i2i.反思与感悟复数的加减法运算,就是实部与实部相加减做实部,虚部与虚部相加减作虚部,同时也把i看作字母,类比多项式加减中的合并同类项跟踪训练1计算:(1)(24i)(34i);(2)(34i)(2i)(15i)解(1)原式(23)(44)i5.(2)原式(321)(415)i22i.探究点二复数乘除法的运算思考1怎样进行复数的乘法?答两个复数相乘,类似于两个多项式相乘,只要把已得结果中的i2换成1,并且把实部与虚部分别合并即可思考2复数的乘法与多项式的乘法有何不同?答复数的乘法与多项
5、式乘法是类似的,有一点不同即必须在所得结果中把i2换成1.例 2计算:(1)(12i)(34i)(2i);(2)(34i)(34i);(3)(1i)2.解(1)(12i)(34i)(2i)(112i)(2i)2015i;(2)(34i)(34i)32(4i)29(16)25;(3)(1i)212ii22i.反思与感悟复数的乘法可以按多项式的乘法法则进行,注意选用恰当的乘法公式进行简便运算,例如平方差公式、完全平方公式等跟踪训练2计算:(1)(2i)(2i);(2)(12i)2.解(1)(2i)(2i)4i24(1)5;(2)(12i)214i(2i)214i4i234i.思考3如何理解复数的除
6、法运算法则?答复数的除法先写成分式的形式,再把分母实数化(方法是分母与分子同时乘以分母的共轭复数,若分母是纯虚数,则只需同时乘以i)例3计算:(1)(12i)(34i);(2)6.解(1)(12i)(34i)i.(2)原式6i61i.反思感悟复数的除法是分子、分母同乘以分母的共轭复数跟踪训练3计算:(1);(2)解(1)1i.(2)13i.探究点三共轭复数及其应用思考1像34i和34i这样的两个复数我们称为互为共轭复数,那么如何定义共轭复数呢?答一般地,当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数通常记复数z的共轭复数为.虚部不等于0的两个共轭复数也叫做共轭虚数思考2复数
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-787737.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
