《新步步高》2017版北师大版数学(文)大一轮复习文档:第九章 平面解析几何 9.8 课时2 WORD版含答案.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新步步高 新步步高2017版北师大版数学文大一轮复习文档:第九章 平面解析几何 9.8 课时2 WORD版含答案
- 资源描述:
-
1、课时2范围、最值问题题型一范围问题例1(2015天津)已知椭圆1(ab0)的左焦点为F(c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2y2截得的线段的长为c,|FM|.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围解(1)由已知有,又由a2b2c2,可得a23c2,b22c2.设直线FM的斜率为k(k0),F(c,0),则直线FM的方程为yk(xc)由已知,有222,解得k.(2)由(1)得椭圆方程为1,直线FM的方程为y(xc),两个方程联立,消去y,整理得3x22cx5c20,解得xc或xc
2、.因为点M在第一象限,可得M的坐标为.由|FM| .解得c1,所以椭圆的方程为1.(3)设点P的坐标为(x,y),直线FP的斜率为t,得t,即直线FP的方程为yt(x1)(x1),与椭圆方程联立消去y,整理得2x23t2(x1)26,又由已知,得t ,解得x1,或1x0.设直线OP的斜率为m,得m,即ymx(x0),与椭圆方程联立,整理得m2.当x时,有yt(x1)0,因此m0,于是m ,得m.当x(1,0)时,有yt(x1)0.因此m0,于是m ,得m.综上,直线OP的斜率的取值范围是.思维升华解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而
3、确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围已知中心在原点的双曲线C的右焦点为(2,0),右顶点为(,0)(1)求双曲线C的方程;(2)若直线:ykxm(k0,m0)与双曲线C交于不同的两点M,N,且线段MN的垂直平分线过点A(0,1),求实数m的取值范围解(1)设双曲线C的方程为1(a0,b0)由已知得:a,c2,又a2b
4、2c2,得b21,双曲线C的方程为y21.(2)联立整理得(13k2)x26kmx3m230.直线与双曲线有两个不同的交点,可得m23k21且k2,设M(x1,y1),N(x2,y2),MN的中点为B(x0,y0),则x1x2,x0,y0kx0m.由题意,ABMN,kAB(k0,m0)整理得3k24m1,将代入,得m24m0,m4.又3k24m10(k0),即m.m的取值范围是(4,)题型二最值问题命题点1利用三角函数有界性求最值例2过抛物线y24x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则|AF|BF|的最小值是()A2 B. C4 D2答案C解析设直线AB的倾斜角为,可得|AF
5、|,|BF|,则|AF|BF|4.命题点2数形结合利用几何性质求最值例3(2015江苏)在平面直角坐标系xOy中,P为双曲线x2y21右支上的一个动点若点P到直线xy10的距离大于c恒成立,则实数c的最大值为_答案解析双曲线x2y21的渐近线为xy0,直线xy10与渐近线xy0平行,故两平行线的距离d.由点P到直线xy10的距离大于c恒成立,得c,故c的最大值为.命题点3转化为函数利用基本不等式或二次函数求最值例4设椭圆M:1 (ab0)的离心率与双曲线x2y21的离心率互为倒数,且椭圆的长轴长为4.(1)求椭圆M的方程;(2)若直线yxm交椭圆M于A,B两点,P(1,)为椭圆M上一点,求PA
6、B面积的最大值解(1)双曲线的离心率为,则椭圆的离心率e,由故椭圆M的方程为1.(2)由得4x22mxm240,由(2m)216(m24)0,得2m2.x1x2m,x1x2,|AB|x1x2|.又P到直线AB的距离d,则SPAB|AB|d ,当且仅当m2(2,2)时取等号,(SPAB)max.思维升华处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-793014.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
