《新步步高》2017版高考数学(理江苏专用)大二轮总复习与增分策略配套练习:专题五 立体几何与空间向量 第1讲 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新步步高 新步步高2017版高考数学理江苏专用大二轮总复习与增分策略配套练习:专题五立体几何与空间向量 第1讲 WORD版含解析 步步高 2017 高考 数学 江苏 专用 二轮 复习 策略 配套
- 资源描述:
-
1、第1讲空间几何体1.(2015江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为_.答案解析设新的底面半径为r,由题意得r24r28524228,解得r.2.(2016课标全国丙改编)在封闭的直三棱柱ABCA1B1C1内有一个体积为V的球,若ABBC,AB6,BC8,AA13,则V的最大值是_.答案解析由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V的最大值为.3.(2015山东改编)在梯形ABCD中,ABC,ADBC,BC2AD2AB2
2、.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为_.答案解析过点C作CE垂直AD所在直线于点E,梯形ABCD绕AD所在直线旋转一周而形成的旋转体是由以线段AB的长为底面圆半径,线段BC为母线的圆柱挖去以线段CE的长为底面圆半径,ED为高的圆锥,如图所示,该几何体的体积为VV圆柱V圆锥AB2BCCE2DE122121.4.(2016浙江) 如图,已知平面四边形ABCD,ABBC3,CD1,AD,ADC90,沿直线AC将ACD翻折成ACD,直线AC与BD所成角的余弦的最大值是_.答案解析设直线AC与BD所成角为,平面ACD翻折的角度为,设点O是AC的中点,由已知得AC,如
3、图,以OB为x轴,OA为y轴,过点O与平面ABC垂直的直线为z轴,建立空间直角坐标系,由A,B,C,作DHAC于点H,翻折过程中,DH始终与AC垂直,CH,则OH,DH,因此可设D,则,与平行的单位向量为n(0,1,0),所以cos |cos,n|,所以cos 1时,cos 取最大值.1.考查空间几何体面积、体积的计算.2.考查空间几何体的侧面展开图及简单的组合体问题.热点一空间几何体的结构特征棱柱的侧棱都平行且相等,上下底面是全等且平行的多边形;棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形;棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.圆柱可由矩形绕其任意一边旋转得到;
4、圆锥可以由直角三角形绕其直角边旋转得到;圆台可以由直角梯形绕直角腰或等腰梯形绕上、下底中点连线旋转得到,也可由平行于圆锥底面的平面截圆锥得到;球可以由半圆或圆绕直径旋转得到.例1设有以下四个命题:底面是平行四边形的四棱柱是平行六面体;底面是矩形的平行六面体是长方体;直四棱柱是直平行六面体;棱台的各侧棱延长后必交于一点.其中真命题的序号是_.答案解析命题符合平行六面体的定义,故命题是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题是错误的;因为直四棱柱的底面不一定是平行四边形,故命题是错误的;命题由棱台的定义知是正确的.思维升华判定与空间几何体结构特征有关命题的方法:(1)紧扣结构特
5、征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.(2)通过旋转体的结构,可对得到旋转体的平面图形进行分解,结合旋转体的定义进行分析.跟踪演练1(1)给出下列四个命题:各侧面都是全等四边形的棱柱一定是正棱柱;对角面是全等矩形的六面体一定是长方体;有两侧面垂直于底面的棱柱一定是直棱柱;长方体一定是正四棱柱.其中正确命题的个数是_.(2)以下命题:以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;圆柱、圆锥、圆台的底面都是圆面;一个平面截圆锥,得到一个圆
6、锥和一个圆台.其中正确命题的个数为_.答案(1)0(2)1解析(1)直平行六面体底面是菱形,满足条件但不是正棱柱;底面是等腰梯形的直棱柱,满足条件但不是长方体;显然错误.(2)命题错,因为这条边若是直角三角形的斜边,则得不到圆锥.命题错,因为这条腰必须是垂直于两底的腰.命题对.命题错,必须用平行于圆锥底面的平面截圆锥才可以.热点二几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧.例2(1)已知
7、一个圆锥的底面积为2,侧面积为4,则该圆锥的体积为_.(2)如图,在棱长为6的正方体ABCDA1B1C1D1中,点E,F分别在C1D1与C1B1上,且C1E4,C1F3,连结EF,FB,DE,BD,则几何体EFC1DBC的体积为_.答案(1)(2)66解析(1)设圆锥的底面半径为r,母线长为l,则r22,rl4,解得r,l2,故高h,所以Vr2h2.(2)如图,连结DF,DC1,那么几何体EFC1DBC被分割成三棱锥DEFC1及四棱锥DCBFC1,那么几何体EFC1DBC的体积为V346(36)66125466.故所求几何体EFC1DBC的体积为66.思维升华(1)求多面体的表面积的基本方法就
8、是逐个计算各个面的面积,然后求和.(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差.求解时注意不要多算也不要少算.跟踪演练2设一个正方体与底面边长为2,侧棱长为的正四棱锥的体积相等,则该正方体的棱长为_.答案2解析设正四棱锥底面正方形ABCD的中心为O,顶点为P,则AO,则OP2h,则正四棱锥的体积为V(2)228a3,得a2.热点三多面体与球与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径.
9、如球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心(或“切点”“接点”)作出截面图.例3(1)已知三棱锥SABC的所有顶点都在球O的球面上,SA平面ABC,SA2,AB1,AC2,BAC60,则球O的表面积为_.(2) 如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为_ cm3.答案(1)16(2)解析(1)在ABC中,BC2AB2AC22ABACcos 603,AC
10、2AB2BC2,即ABBC,又SA平面ABC,三棱锥SABC可补成分别以AB1,BC,SA2为长、宽、高的长方体,球O的直径4,故球O的表面积为42216.(2) 过球心与正方体中点的截面如图,设球心为点O,球半径为R cm,正方体上底面中心为点A,上底面一边的中点为点B,在RtOAB中,OA(R2)cm,AB4 cm,OBR cm,由R2(R2)242,得R5,V球R3(cm3).思维升华三棱锥PABC可通过补形为长方体求解外接球问题的两种情形:(1)点P可作为长方体上底面的一个顶点,点A、B、C可作为下底面的三个顶点;(2)PABC为正四面体,则正四面体的棱都可作为一个正方体的面对角线.跟
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-793248.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
