《考前三个月》2015高考数学(江苏专用文科)高考必会题型:专题三 函数与导数 第13练 .docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 考前三个月
- 资源描述:
-
1、第13练高考对于导数几何意义的必会题型题型一直接求切线或切线斜率问题例1已知f(x)x3f()x2x,则f(x)的图象在点(,f()处的切线斜率是_破题切入点先对函数求导,将x代入求得f()的值即是答案1解析f(x)3x22f()x1,令x,可得f()3()22f()1,解得f()1,所以f(x)的图象在点(,f()处的切线斜率是1.题型二转化为切线问题例2设点P在曲线yex上,点Q在曲线yln(2x)上,则PQ的最小值为_破题切入点结合图形,将求PQ的最小值转化为函数切线问题答案(1ln 2)解析由题意知函数yex与yln(2x)互为反函数,其图象关于直线yx对称,两曲线上点之间的最小距离就
2、是yx与yex上点的最小距离的2倍设yex上点(x0,y0)处的切线与直线yx平行则ex01,x0ln 2,y01,点(x0,y0)到yx的距离为(1ln 2),则PQ的最小值为(1ln 2)2(1ln 2)题型三综合性问题例3(2013课标全国)已知函数f(x)ex(axb)x24x,曲线yf(x)在点(0,f(0)处的切线方程为y4x4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值破题切入点先利用导数的几何意义和已知的切线方程列出关于a,b的方程组,求出a,b的值;然后确定函数f(x)的解析式,求出其导函数,利用导函数的符号判断函数f(x)的单调性,进而确定极值解(
3、1)f(x)ex(axb)aex2x4ex(axab)2x4,yf(x)在(0,f(0)处的切线方程为y4x4,f(0)ab44,f(0)b4,a4,b4.(2)由(1)知f(x)4ex(x2)2(x2)2(x2)(2ex1),令f(x)0得x12,x2ln ,列表:x(,2)2ln f(x)00f(x)极大值极小值yf(x)的单调增区间为(,2),;单调减区间为.f(x)极大值f(2)44e2.总结提高(1)熟练掌握导数的几何意义,审准题目,求出导数,有时需要设切点,然后根据直线的点斜式形式写出切线方程(2)一般两曲线上点的距离的最小值或一曲线上点到一直线上点的距离的最小值的求法都是转化为求
4、曲线的切线,找出平行线然后求出最小值(3)已知切线方程求参数的值或范围时要验证1设f(x)xln x,若f(x0)2,则x0的值为_答案e解析由f(x)xln x得f(x)ln x1.根据题意知ln x012,所以ln x01,因此x0e.2若曲线yx4的一条切线l与直线x4y80垂直,则l的方程为_答案4xy30解析切线l的斜率k4,设yx4的切点的坐标为(x0,y0),则k4x4,x01,切点为(1,1),即y14(x1),整理得l的方程为4xy30.3曲线y在点(1,1)处的切线方程为_答案2xy10解析易知点(1,1)在曲线上,且y,所以切线斜率ky|x12.由点斜式得切线方程为y12
5、(x1),即2xy10.4曲线yxln x在点(e,e)处的切线与直线xay1垂直,则实数a的值为_答案2解析依题意得y1ln x,y|xe1ln e2,所以21,a2.5若函数f(x)ax4bx2c满足f(1)2,则f(1)_.答案2解析f(x)4ax32bx,f(x)为奇函数且f(1)2,f(1)2.6已知函数f(x)x33x,若过点A(0,16)且与曲线yf(x)相切的切线方程为yax16,则实数a的值是_答案9解析先设切点为M(x0,y0),则切点在曲线y0x3x0上,求导数得到切线的斜率kf(x0)3x3,又切线过A、M两点,所以k,则3x3.联立可解得x02,y02,从而实数a的值
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-794627.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
