【创新设计】2022届高考数学一轮总复习 第八篇 第6讲 空间中向量的概念和运算 理 湘教版.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 【创新设计】2022届高考数学一轮总复习 第八篇 第6讲 空间中向量的概念和运算 湘教版 创新 设计 2022 高考 数学 一轮 复习 第八 空间 向量 概念 运算
- 资源描述:
-
1、第6讲 空间中向量的概念和运算A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1在下列命题中:若向量a,b共线,则向量a,b所在的直线平行;若向量a,b所在的直线为异面直线,则向量a,b一定不共面;若三个向量a,b,c两两共面,则向量a,b,c,共面;已知空间的三个向量a,b,c,则对于空间的任意一个向量p总存在实数x,y,z使得pxaybzc.其中正确命题的个数是 ()A0 B1 C2 D3解析a与b共线,a,b所在直线也可能重合,故不正确;根据自由向量的意义知,空间任两向量a,b都共面,故错误;三个向量a,b,c中任两个一定共面,但它们三个却不一定共面,故不正确
2、;只有当a,b,c不共面时,空间任意一向量p才能表示为pxaybzc,故不正确,综上可知四个命题中正确的个数为0,故选A.答案A2若向量a(1,1,x),b(1,2,1),c(1,1,1),满足条件(ca)(2b)2,则x ()A4 B2 C4 D2解析a(1,1,x),b(1,2,1),c(1,1,1),ca(0,0,1x),2b(2,4,2)(ca)(2b)2(1x)2,x2.答案D3若a,b,c为空间的一组基底,则下列各项中,能构成基底的一组向量是()Aa,ab,ab Bb,ab,abCc,ab,ab Dab,ab,a2b解析若c、ab、ab共面,则c(ab)m(ab)(m)a(m)b,
3、则a、b、c为共面向量,此与a,b,c为空间向量的一组基底矛盾,故c,ab,ab可构成空间向量的一组基底答案C4.如图所示,已知空间四边形OABC,OBOC,且AOBAOC,则cos,的值为 ()A0 B. C. D.解析设a,b,c,由已知条件a,ba,c,且|b|c|,a(cb)acab|a|c|a|b|0,cos,0.答案A二、填空题(每小题5分,共10分)5在下列条件中,使M与A、B、C一定共面的是_2;0;0;解析0,则、为共面向量,即M、A、B、C四点共面答案6.在空间四边形ABCD中,_.解析如图,设a,b,c,a(cb)b(ac)c(ba)0.答案0三、解答题(共25分)7(1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-800089.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
2023部编三下语文第八单元25灰雀笔顺动漫课件.pptx
