三年模拟一年创新2022届高考数学复习第九章第六节直线与圆锥曲线的位置关系文全国通用.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三年 模拟 一年 创新 2022 高考 数学 复习 第九 第六 直线 圆锥曲线 位置 关系 全国 通用
- 资源描述:
-
1、【大高考】(三年模拟一年创新)2022届高考数学复习 第九章 第六节 直线与圆锥曲线的位置关系 文(全国通用)A组专项基础测试三年模拟精选一、选择题1(2022沈阳模拟)已知双曲线1(a0,b0)的左、右焦点分别为F1,F2,点M在双曲线的左支上,且|MF2|7|MF1|,则此双曲线离心率的最大值为()A. B. C2 D.解析由双曲线的定义|MF2|MF1|2a,得|MF1|,|MF2|,|MF1|MF2|F1F2|2c,故e.答案A2(2022马鞍山模拟)以双曲线1(a0,b0)的中心O(坐标原点)为圆心,焦距为直径的圆与双曲线交于M点(第一象限),F1,F2分别为双曲线的左、右焦点,过点
2、M作x轴垂线,垂足恰为OF2的中点,则双曲线的离心率为()A.1 B. C.1 D2解析过点M作x轴垂线,交x轴于点A,由|MF2|2|F2A|F1F2|得|MF2|c,由双曲线定义|MF1|MF2|2a,得|MF1|2ac,由|MF1|2|MF2|2|F1F2|24c2,得c22ac2a20,即e22e20,得e1.答案C3(2022东北四校联考)设P是椭圆1上一点,M,N分别是两圆:(x4)2y21和(x4)2y21上的点,则|PM|PN|的最小值、最大值分别为()A9,12 B8,11 C8,12 D10,12解析如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|PA
3、|PB|2a10,连接PA,PB分别与圆相交于M,N两点,此时|PM|PN|最小,最小值为|PA|PB|2R8;连接PA,PB并延长,分别与圆相交于M,N两点,此时|PM|PN|最大,最大值为|PA|PB|2R12,即最小值和最大值分别为8,12.答案C二、填空题4(2022宜宾二模)已知椭圆1(ab0)的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于点P,若F1PF2为等腰直角三角形,则椭圆的离心率为_解析由题意得|PF2|,又|F1F2|PF2|,2c,b2a2c2,c22aca20,e22e10,解得e1,又0e1,e1.答案1一年创新演练5若C(,0),D(,0),M是椭圆y
4、21上的动点,则的最小值为_解析由椭圆y21知c2413,c,C,D是该椭圆的两焦点,令|MC|r1,|MD|r2,则r1r22a4,又r1r24,1.当且仅当r1r2时,上式等号成立故的最小值为1.答案16已知椭圆C的中心为坐标原点O,一个长轴顶点为(0,2),它的两个短轴顶点和焦点所组成的四边形为正方形,直线l与y轴交于点P(0,m),与椭圆C交于异于椭圆顶点的两点A,B,且2.(1)求椭圆的方程;(2)求m的取值范围解(1)由题意,知椭圆的焦点在y轴上,设椭圆方程为1(ab0),由题意,知a2,bc,又a2b2c2,则b,所以椭圆方程为1.(2)设A(x1,y1),B(x2,y2),由题
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-820247.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
