分享
分享赚钱 收藏 举报 版权申诉 / 34

类型专题1.31 《二次函数》全章复习与巩固(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx

  • 上传人:a****
  • 文档编号:830880
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:34
  • 大小:1.13MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    二次函数 专题1.31 二次函数全章复习与巩固知识讲解-2022-2023学年九年级数学上册基础知识专项讲练浙教版 专题 1.31 二次 函数 复习 巩固 知识 讲解 2022 2023 学年
    资源描述:

    1、专题1.31 二次函数全章复习与巩固(知识讲解)【学习目标】1通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义;2会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;3会根据公式确定图象的顶点、开口方向和对称轴(公式不要求记忆和推导),并能解决简单的实际问题;4会利用二次函数的图象求一元二次方程的近似解.【要点梳理】要点一、二次函数的定义一般地,如果是常数,那么叫做的二次函数.特别说明:如果y=ax2+bx+c(a,b,c是常数,a0),那么y叫做x的二次函数这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零a 的绝对值越大,抛物线的开口越小.要点

    2、二、二次函数的图象与性质1.二次函数由特殊到一般,可分为以下几种形式:;,其中;.(以上式子a0)几种特殊的二次函数的图象特征如下:函数解析式开口方向对称轴顶点坐标当时开口向上当时开口向下(轴)(0,0)(轴)(0,)(,0)(,)()2.抛物线的三要素:开口方向、对称轴、顶点.(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.3.抛物线中,的作用:(1)决定开口方向及开口大小,这与中的完全一样.(2)和共同决定抛物线对称轴的位置.由于抛物线的对称轴是直线, 故:时,对称轴为轴;(即、同号

    3、)时,对称轴在轴左侧;(即 、异号)时,对称轴在轴右侧.(3)的大小决定抛物线与轴交点的位置. 当时,抛物线与轴有且只有一个交点(0,): ,抛物线经过原点; ,与轴交于正半轴;,与轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在轴右侧,则 .4.用待定系数法求二次函数的解析式:(1)一般式:(a0).已知图象上三点或三对、的值,通常选择一般式.(2)顶点式:(a0).已知图象的顶点或对称轴,通常选择顶点式.(可以看成的图象平移后所对应的函数.)(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式: (a0).(由此得根与系数的关系:).特别说明:求抛物线(a0)

    4、的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用要点三、二次函数与一元二次方程的关系函数,当时,得到一元二次方程,那么一元二次方程的解就是二次函数的图象与x轴交点的横坐标,因此二次函数图象与x轴的交点情况决定一元二次方程根的情况.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根. 通过下面表格可以直观地观察到二次函数图象和一元二次方程的关系:的图象的解方程有两个不等实数解方程有两个

    5、相等实数解方程没有实数解特别说明:二次函数图象与x轴的交点的个数由的值来确定.(1)当二次函数的图象与x轴有两个交点,这时,则方程有两个不相等实根;(2)当二次函数的图象与x轴有且只有一个交点,这时,则方程有两个相等实根;(3)当二次函数的图象与x轴没有交点,这时,则方程没有实根.要点四、利用二次函数解决实际问题利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.利用二次函数解决实际问题的一般步骤是:(1)建立适当的平面直角坐标

    6、系;(2)把实际问题中的一些数据与点的坐标联系起来;(3)用待定系数法求出抛物线的关系式;(4)利用二次函数的图象及其性质去分析问题、解决问题.特别说明:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.【典型例题】类型一、求二次函数的解析式1如图,已知二次函数yx2+bx+c的图象经过点A(4,5)与点B(0,3),且与x轴交于点C、D(1)求该二次函数的表达式,以及与x轴的交点坐标(2)若点Q(m,n)在该二次函数图象上,求n的最小值;若点Q到x轴的距离

    7、小于3,请结合函数图象直接写出m的取值范围【答案】(1),与x轴的交点坐标为和(2)-4;1m0或2m1+【分析】(1)利用待定系数法即可求得二次函数的解析式,令,解即可求得交点坐标(2)把函数解析式变形为顶点式即可求得答案;根据平面直角坐标系内点到x轴的距离的特点即可求解(1)解:将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为,令yx22x30,解得或,故抛物线与x轴的交点坐标为和(2),故n的最小值为4;令,解得或2或,故m的取值范围为:或【点拨】本题考查了二次函数的图象及性质、利用待定系数法求函数解析式,熟练掌握二次函数的图象及性质和待定系数法是解题的关键举一反三:【变式1

    8、】已知x与y之间的函数关系式为(其中a、b是常数),且有下列对应关系:x12y117(1)求y与x之间的函数关系式;(2)若点,点均在抛物线上,求m的值【答案】(1)(2),【分析】(1)利用待定系数法,将对应的x,y代入,解二元一次方程组即可;(2)先将代入y与x之间的函数关系式求出的值,再将代入y与x之间的函数关系式求出m的值(1)解:由题意得,解得,y与x之间的函数关系式为(2)解:点在抛物线上,点在抛物线上,整理得,解得,【点拨】本题考查待定系数法求二次函数解析式以及二次函数图象上点的坐标的特征,难度较小,牢记二次函数图象上的点均满足函数解析式是解题的关键【变式2】如图,在平面直角坐标

    9、系xOy中,一次函数y=x的图象与二次函数y=-x2+bx(b为常数)的图象相交于O,A两点,点A坐标为(3,m)(1)求m的值以及二次函数的表达式;(2)若点P为抛物线的顶点,连结OP,AP,求POA的面积【答案】(1)m的值为3,二次函数的表达式为:y=-x2+4x;(2)POA的面积为3【分析】(1)把点A的坐标为(3,m)代入y=x可求出m的值,然后再把A点坐标代入二次函数表达式即可解答;(2)过点P作PCx轴,垂足为C,交OA于点D,然后把OPD的面积与APD的面积相加即可(1)解:把点A坐标为(3,m)代入一次函数y=x中可得:m=3,A(3,3),把点A坐标为(3,3)代入二次函

    10、数y=-x2+bx中可得:3=-9+3b,解得:b=4,y=-x2+4x,答:m的值为3,二次函数的表达式为:y=-x2+4x;(2)解:过点P作PCx轴,垂足为C,交OA于点D,过点A作AEPC,垂足为E,y=-x2+4x=-(x-2)2+4,顶点P(2,4),把x=2代入y=x中得:y=2,D(2,2),PD=4-2=2,POA的面积=OPD的面积+APD的面积,POA的面积=PDOC+PDAE=PD(OC+AE)=23=3,答:POA的面积为3【点拨】本题考查了待定系数法求二次函数解析式,二次函数的性质,正比例函数的图象,把POA的面积分成OPD的面积与APD的面积之和是解题的关键类型二

    11、、根据二次函数图象及性质判断代数式的符号2已知二次函数的图象如图,它与x轴的两个交点分别为,对于下列结论:;其中结论正确的个数有()A3个B2个C1个D0个【答案】B【分析】根据开口方向确定a的符号后再根据抛物线与x轴的交点坐标得到对称轴,确定b的符号,即可判断,利用抛物线与y轴交点位置确定c的符号,即可判断,令即可判断,利用根与系数的关系即可判断解:二次函数的图象开口向上,且与x轴的两个交点分别为,且该图象的对称轴为,故错误;由图可知,抛物线交y轴负半轴,又,故错误;由图可知,当时,故正确;,故正确;故选:B【点拨】本题考查了抛物线的解析式以及它的图象与性质,解题关键是理解并掌握对称轴公式、

    12、一元二次方程根与系数的关系以及会根据点的坐标判断代数式的取值情况举一反三:【变式1】如图,抛物线经过点,且对称轴为直线,其部分图像如图所示下列说法正确的个数是();(其中)A0B1C2D3【答案】B【分析】根据抛物线的性质,对称性,抛物线与x轴的交点,与y轴的交点,最值去分析判断即可解: 抛物线经过点,开口向下,与y轴交点位于y轴的正半轴,且对称轴为直线, a0,c0,a+b+c=0,ac0,故都是错误的;a0,抛物线有最大值,且当x=-1时,取得最值,且最大值为a-b+c,当m-1时,故,故正确,故选B【点拨】本题考查了抛物线的性质,对称性,最值,抛物线与坐标轴的交点,熟练掌握抛物线的性质和

    13、最值、对称性是解题的关键【变式2】如图,已知二次函数的图象交轴于,对称轴为则下列结论:;若,是图象上的两点,则;若,则其中正确结论的个数是()A2B3C4D5【答案】B【分析】由图象可知当x=0时,c0,再根据开口向上及对称轴,即可得a、b的取值范围,据此即可判定;根据题意可求得函数图象与x轴的另一个交点坐标,再根据二次函数的性质,即可判定;根据对称轴所在的直线为,可得b=2a,由当x=1时,a+b+c=0,即可判定;首先可求得点关于对称轴对称的点的坐标为,再根据二次函数的性质,即可判定;首先可求得点(0,c)关于对称轴对称的点的坐标为(-2,c),再根据函数图象即可判定,据此即可解答解:由图

    14、象可知,当x=0时,y0,c的解集为或;(3)点M的横坐标的取值范围是:或【分析】(1)把A(2,0)分别代入两个解析式,即可求得和的值;(2)解方程求得点B的坐标为(-1,3),数形结合即可求解;(3)画出图形,利用数形结合思想求解即可解:(1)点A(2,0)同时在与上,解得:,;(2)由(1)得抛物线的解析式为,直线的解析式为,解方程,得:点B的横坐标为,纵坐标为,点B的坐标为(-1,3),观察图形知,当或时,抛物线在直线的上方,不等式的解集为或;(3)如图,设A、B向左移3个单位得到A1、B1,点A(2,0),点B(-1,3),点A1 (-1,0),点B1 (-4,3),A A1BB13,且A A1BB1,即MN为A A1、BB1相互平行的线段,对于抛物线,顶点为(1,-1),如图,当点M在线段AB上时,线段MN与抛物线只有一个公共点,此时,当线段MN经过抛物线的顶点(1,-1)时,线段MN与抛物线也只有一个公共点,此时点M1的纵坐标为-1,则,解得,综上,点M的横坐标的取值范围是:或【点拨】本题考查了二次函数的图象与性质;能够画出图形,结合函数图象,运用二次函数的性质求解是关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题1.31 《二次函数》全章复习与巩固(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(浙教版).docx
    链接地址:https://www.ketangku.com/wenku/file-830880.html
    相关资源 更多
  • 人教版六年级上册数学期末测试卷及参考答案(能力提升).docx人教版六年级上册数学期末测试卷及参考答案(能力提升).docx
  • 人教版六年级上册数学期末测试卷及参考答案(考试直接用).docx人教版六年级上册数学期末测试卷及参考答案(考试直接用).docx
  • 人教版六年级上册数学期末测试卷及参考答案(综合题).docx人教版六年级上册数学期末测试卷及参考答案(综合题).docx
  • 人教版六年级上册数学期末测试卷及参考答案(综合卷).docx人教版六年级上册数学期末测试卷及参考答案(综合卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(精练).docx人教版六年级上册数学期末测试卷及参考答案(精练).docx
  • 人教版六年级上册数学期末测试卷及参考答案(突破训练).docx人教版六年级上册数学期末测试卷及参考答案(突破训练).docx
  • 人教版六年级上册数学期末测试卷及参考答案(研优卷).docx人教版六年级上册数学期末测试卷及参考答案(研优卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(满分必刷).docx人教版六年级上册数学期末测试卷及参考答案(满分必刷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(最新).docx人教版六年级上册数学期末测试卷及参考答案(最新).docx
  • 人教版六年级上册数学期末测试卷及参考答案(新).docx人教版六年级上册数学期末测试卷及参考答案(新).docx
  • 人教版六年级上册数学期末测试卷及参考答案(巩固).docx人教版六年级上册数学期末测试卷及参考答案(巩固).docx
  • 人教版六年级上册数学期末测试卷及参考答案(完整版).docx人教版六年级上册数学期末测试卷及参考答案(完整版).docx
  • 人教版六年级上册数学期末测试卷及参考答案(基础题).docx人教版六年级上册数学期末测试卷及参考答案(基础题).docx
  • 人教版六年级上册数学期末测试卷及参考答案(培优b卷).docx人教版六年级上册数学期末测试卷及参考答案(培优b卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(培优a卷).docx人教版六年级上册数学期末测试卷及参考答案(培优a卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(名师推荐).docx人教版六年级上册数学期末测试卷及参考答案(名师推荐).docx
  • 人教版六年级上册数学期末测试卷及参考答案(典型题).docx人教版六年级上册数学期末测试卷及参考答案(典型题).docx
  • 人教版六年级上册数学期末测试卷及参考答案(b卷).docx人教版六年级上册数学期末测试卷及参考答案(b卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案(a卷).docx人教版六年级上册数学期末测试卷及参考答案(a卷).docx
  • 人教版六年级上册数学期末测试卷及参考答案一套.docx人教版六年级上册数学期末测试卷及参考答案一套.docx
  • 人教版六年级上册数学期末测试卷及参考答案【预热题】.docx人教版六年级上册数学期末测试卷及参考答案【预热题】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【达标题】.docx人教版六年级上册数学期末测试卷及参考答案【达标题】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【能力提升】.docx人教版六年级上册数学期末测试卷及参考答案【能力提升】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【考试直接用】.docx人教版六年级上册数学期末测试卷及参考答案【考试直接用】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【综合题】.docx人教版六年级上册数学期末测试卷及参考答案【综合题】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【综合卷】.docx人教版六年级上册数学期末测试卷及参考答案【综合卷】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【精练】.docx人教版六年级上册数学期末测试卷及参考答案【精练】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【突破训练】.docx人教版六年级上册数学期末测试卷及参考答案【突破训练】.docx
  • 人教版六年级上册数学期末测试卷及参考答案【研优卷】.docx人教版六年级上册数学期末测试卷及参考答案【研优卷】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1