分享
分享赚钱 收藏 举报 版权申诉 / 13

类型专题15 概率与统计(解答题)(原卷版).docx

  • 上传人:a****
  • 文档编号:832262
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:13
  • 大小:412.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题15 概率与统计解答题原卷版 专题 15 概率 统计 解答 原卷版
    资源描述:

    1、五年(2019-2023)年高考真题分项汇编专题15 概率与统计(解答题)概率与统计题型主要包含二项式定理,排列组合,随机抽样,统计与概率等主要考查题型为:考点01 统计案例及应用考点02 随机事件分布列考点03 相关关系与回归分析考点04 独立性检验考点05 概率统计的综合应用考点01:统计案例及应用1(2022高考北京卷)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含)的同学将获得优秀奖为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:980,970,955,954,948,942,940,935,930,925;

    2、乙:978,956,951,936,932,923;丙:985,965,920,916假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)2(2023年全国乙卷理科)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率甲、乙两种工艺处理后的橡胶

    3、产品的伸缩率分别记为,试验结果如下:试验序号12345678910伸缩率545533551522575544541568596548伸缩率536527543530560533522550576536记,记样本平均数为,样本方差为(1)求,;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)3(2020年高考课标卷理科)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进

    4、行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束经抽签,甲、乙首先比赛,丙轮空设每场比赛双方获胜的概率都为,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率4(2021年高考全国乙卷理科)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备98103100102999810010110297新设备101104101100101103106105104105旧设备和新设备生产产品的

    5、该项指标的样本平均数分别记为和,样本方差分别记为和(1)求,;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高)5(2021年新高考卷)某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束:若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束A类问题中的每个问题回答正确得20分,否则得0分:B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为08

    6、,能正确回答B类问题的概率为06,且能正确回答问题的概率与回答次序无关(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;(2)为使累计得分期望最大,小明应选择先回答哪类问题?并说明理由6(2022新高考全国II卷)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间的概率;(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率

    7、(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到00001)2(2019全国理)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液每只小鼠给服的溶液体积相同、摩尔浓度相同经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比根据试验数据分别得到如下直方图:记为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为(1)求乙离子残留百分比直方图中的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表)考点02 随机事件分布

    8、列1(2022年高考全国甲卷数学(理)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局三个项目比赛结束后,总得分高的学校获得冠军已知甲学校在三个项目中获胜的概率分别为05,04,08,各项目的比赛结果相互独立(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望2(2021高考北京)在核酸检测中, “k合1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,

    9、得到每人的检测结果,检测结束现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确(I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测(i)如果感染新冠病毒的2人在同一组,求检测的总次数;(ii)已知感染新冠病毒的2人分在同一组的概率为设X是检测的总次数,求X的分布列与数学期望E(X)(II)将这100人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测设Y是检测的总次数,试判断数学期望E(Y)与(I)中E(X)的大小(结论不要求证明)3(2020江苏高考)甲口袋中装有个黑球和个白球,乙口袋中装有个白球现从甲、乙两口袋中各任取

    10、一个球交换放入另一口袋,重复次这样的操作,记甲口袋中黑球个数为,恰有个黑球的概率为,恰有个黑球的概率为(1)求和;(2)求与的递推关系式和的数学期望(用表示)4(2019全国理)分制乒乓球比赛,每赢一球得分,当某局打成平后,每球交换发球权,先多得分的一方获胜,该局比赛结束甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为,乙发球时甲得分的概率为,各球的结果相互独立在某局双方平后,甲先发球,两人又打了个球该局比赛结束求;求事件“且甲获胜”的概率5(2019天津理)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立()用表

    11、示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;()设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率考点03 相关关系与回归分析1(2022年高考全国乙卷数学(理)某地经过多年的环境治理,已将荒山改造成了绿水青山为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:样本号12345678910总和根部横截面积00400600400800800500500700700606材积量025040022054051034036046

    12、04204039并计算得(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到001);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为已知树木的材积量与其根部横截面积近似成正比利用以上数据给出该林区这种树木的总材积量的估计值附:相关系数2(2020年高考课标卷理科)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加为调查该地区某种野生动物数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,

    13、2,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(xi,yi)(i=1,2,20)的相关系数(精确到001);(3)根据现有统计资料,各地块间植物覆盖面积差异很大为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由附:相关系数r=,1414 考点04 独立性检验1(2023年全国甲卷理科)一项试验旨在研究臭氧效应实验方案如下:选40只小白鼠,随机地将其中20只分配到实

    14、验组,另外20只分配到对照组,实验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g)(1)设表示指定的两只小白鼠中分配到对照组的只数,求的分布列和数学期望;(2)实验结果如下:对照组的小白鼠体重的增加量从小到大排序为:152 188 202 213 225 232 258 265 275 301326 343 348 356 356 358 362 373 405 432对照组的小白鼠体重的增加量从小到大排序为:78 92 114 124 132 155 165 180 188 192198 202 216 228 236 239 2

    15、51 282 323 365(i)求40只小鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于的数据的个数,完成如下列联表:对照组实验组(ii)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与正常环境中体重的增加量有差异附:0100005000102706384166352(2021年高考全国甲卷理科)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级

    16、品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:005000100001k38416635108283(2020年高考课标卷理科)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):锻炼人次空气质量等级0,200(200,400(400,6001(优)216252(良)510123(轻度污染)6784(中度污染)720(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级

    17、为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”根据所给数据,完成下面的22列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?人次400人次400空气质量好空气质量不好附:,P(K2k)0050 0010 0001k38416635108284(2020年新高考全国卷)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的和浓度(单位:),得下表: 3218468123710(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;(2)根据所给数据,完成下面的列联表:

    18、 (3)根据(2)中列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?附:,0050 0010 00013841 6635 108285(2020年新高考全国卷数学)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的和浓度(单位:),得下表:(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;(2)根据所给数据,完成下面的列联表:(3)根据(2)中的列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?附:,考点05 概率统计综合应用1(2023年新高考全国卷)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命

    19、中则换为对方投篮无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5(1)求第2次投篮的人是乙的概率;(2)求第次投篮的人是甲的概率;(3)已知:若随机变量服从两点分布,且,则记前次(即从第1次到第次投篮)中甲投篮的次数为,求2(2023年新课标全国卷)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性此检测标准的

    20、漏诊率是将患病者判定为阴性的概率,记为;误诊率是将未患病者判定为阳性的概率,记为假设数据在组内均匀分布,以事件发生的频率作为相应事件发生的概率(1)当漏诊率时,求临界值c和误诊率;(2)设函数,当时,求的【解析】式,并求在区间的最小值3(2021年新高考全国卷)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,(1)已知,求;(2)设p表示该种微生物经过多代繁殖后临近灭绝概率,p是关于x的方程:的一个最小正实根,求证:当时,当时,;(

    21、3)根据你的理解说明(2)问结论的实际含义4(2019全国理)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验试验方案如下:每一轮选取两只白鼠对药效进行对比试验对于两只白鼠,随机选一只施以甲药,另一只施以乙药一轮的治疗结果得出后,再安排下一轮试验当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效为了方便描述问题,约定,对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1分;若都治愈或都未治愈则两种药均得0分甲、乙两种药的治愈率分别记为和,一轮试验中甲药的得分记为X(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则(),其中,假设,(i)证明:为等比数列;(ii)求,并根据的值解释这种试验方案的合理性

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题15 概率与统计(解答题)(原卷版).docx
    链接地址:https://www.ketangku.com/wenku/file-832262.html
    相关资源 更多
  • 八年级下册(全)-2022年中考道德与法治必备知识清单(思维导图 核心知识 考点梳理)(部编版).docx八年级下册(全)-2022年中考道德与法治必备知识清单(思维导图 核心知识 考点梳理)(部编版).docx
  • 八年级下册(人教版)物理同步练习卷:8.2 二力平衡.docx八年级下册(人教版)物理同步练习卷:8.2 二力平衡.docx
  • 八年级下册(人教版)物理单元提升卷:第八章 运动和力.docx八年级下册(人教版)物理单元提升卷:第八章 运动和力.docx
  • 八年级下册道德与法治全册知识点.docx八年级下册道德与法治全册知识点.docx
  • 八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx
  • 八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx八年级下册课内文言文《核舟记》对比阅读(5篇 含答案).docx
  • 八年级下册英语复习Unit15(无答案).docx八年级下册英语复习Unit15(无答案).docx
  • 八年级下册英语任务型阅读专题训练(无答案).docx八年级下册英语任务型阅读专题训练(无答案).docx
  • 八年级下册英语Unit3SectionB重要考点.docx八年级下册英语Unit3SectionB重要考点.docx
  • 八年级下册第五章测试卷(B卷).docx八年级下册第五章测试卷(B卷).docx
  • 八年级下册第五章测试卷(A卷).docx八年级下册第五章测试卷(A卷).docx
  • 八年级下册第一单元 第二节第一课时《充满活力的经济制度》课件(湘师版八年级下).docx八年级下册第一单元 第二节第一课时《充满活力的经济制度》课件(湘师版八年级下).docx
  • 八年级下册电功率课件.docx八年级下册电功率课件.docx
  • 八年级下册生物第八单元第三章章末卷.docx八年级下册生物第八单元第三章章末卷.docx
  • 八年级下册生物第八单元第一章章末卷.docx八年级下册生物第八单元第一章章末卷.docx
  • 八年级下册生物第七单元第二章2卷.docx八年级下册生物第七单元第二章2卷.docx
  • 八年级下册物理走进分子世界 (共5份打包).docx八年级下册物理走进分子世界 (共5份打包).docx
  • 八年级下册物理10.1浮力助学案(无答案).docx八年级下册物理10.1浮力助学案(无答案).docx
  • 八年级下册期末试卷不含答案.docx八年级下册期末试卷不含答案.docx
  • 八年级下册复习提纲(填空版).docx八年级下册复习提纲(填空版).docx
  • 八年级下册基础知识及热点速查宝典.docx八年级下册基础知识及热点速查宝典.docx
  • 八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx
  • 八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx八年级下册地理:8.2 干旱的宝地——塔里木盆地教案.docx
  • 八年级下册同步练习23.马说.docx八年级下册同步练习23.马说.docx
  • 八年级下册同步练习18.在长江源头各拉丹冬.docx八年级下册同步练习18.在长江源头各拉丹冬.docx
  • 八年级下册同步练习13.最后一次讲演.docx八年级下册同步练习13.最后一次讲演.docx
  • 八年级下册化学教案-《探究燃烧的条件》|鲁教版(五四).docx八年级下册化学教案-《探究燃烧的条件》|鲁教版(五四).docx
  • 八年级下册人教部编版课外古诗词诵读陆游《卜算子·咏梅》(共39张PPT).docx八年级下册人教部编版课外古诗词诵读陆游《卜算子·咏梅》(共39张PPT).docx
  • 八年级下册人教部编版课外古诗词诵读陆游《卜算子.docx八年级下册人教部编版课外古诗词诵读陆游《卜算子.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1