专题24 与二次函数相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题24 与二次函数相关的压轴题-三年2019-2021中考真题数学分项汇编全国通用原卷版 专题 24 二次 函数 相关 压轴 三年 2019 2021 中考 数学 汇编 全国 通用 原卷版
- 资源描述:
-
1、专题24 与二次函数相关的压轴题一、选填题1(2021湖北黄石市中考真题)二次函数(、是常数,且)的自变量与函数值的部分对应值如下表:01222且当时,对应的函数值有以下结论:;关于的方程的负实数根在和0之间;和在该二次函数的图象上,则当实数时,其中正确的结论是( )ABCD2(2021黑龙江大庆市中考真题)已知函数,则下列说法不正确的个数是( )若该函数图像与轴只有一个交点,则;方程至少有一个整数根若,则的函数值都是负数不存在实数,使得对任意实数都成立A0B1C2D33(2021湖北随州市中考真题)如图,已知抛物线的对称轴在轴右侧,抛物线与轴交于点和点,与轴的负半轴交于点,且,则下列结论:;
2、当时,在轴下方的抛物线上一定存在关于对称轴对称的两点,(点在点左边),使得其中正确的有( )A1个B2个C3个D4个4(2021内蒙古呼和浩特市中考真题)已知二次项系数等于1的一个二次函数,其图象与x轴交于两点,且过,两点(b,a是实数),若,则的取值范围是()ABCD5(2021湖南岳阳市中考真题)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”如图,在正方形中,点,点,则互异二次函数与正方形有交点时的最大值和最小值分别是( )A4,-1B,-1C4,0D,-16(2021四川广元市中考真题)将二次函数的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示当直线
3、与新函数的图象恰有3个公共点时,b的值为( )A或B或C或D或7(2021辽宁本溪市中考真题)如图,在矩形中,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度设运动时间为t秒,的面积为S,则下列图象能大致反映S与t之间函数关系的是( )A BC D8(2021内蒙古通辽市中考真题)如图,在矩形中,动点P,Q同时从点A出发,点P沿ABC的路径运动,点Q沿ADC的路径运动,点P,Q的运动速度相同,当点P到达点C时,点Q也随之停止运动,连接设点P的运动路程为x,为y,则y关于x的函数图象大致是( )A B
4、CD9(2021山东威海市中考真题)如图,在菱形ABCD中,点P,Q同时从点A出发,点P以1cm/s的速度沿ACD的方向运动,点Q以2cm/s的速度沿ABCD的方向运动,当其中一点到达D点时,两点停止运动设运动时间为x(s),的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是( )ABCD10(2021黑龙江齐齐哈尔市中考真题)如图,抛物线的解析式为,点的坐标为,连接:过A1作,分别交y轴、抛物线于点、:过作,分别交y轴、抛物线于点、;过作,分别交y轴、抛物线于点、:按照如此规律进行下去,则点(n为正整数)的坐标是_11(2021广西来宾市中考真题)如图,已知点,两点,在抛物线
5、上,向左或向右平移抛物线后,的对应点分别为,当四边形的周长最小时,抛物线的解析式为_二、解答题1(2021湖北恩施土家族苗族自治州中考真题)如图,在平面直角坐标系中,四边形为正方形,点,在轴上,抛物线经过点,两点,且与直线交于另一点(1)求抛物线的解析式;(2)为抛物线对称轴上一点,为平面直角坐标系中的一点,是否存在以点,为顶点的四边形是以为边的菱形若存在,请求出点的坐标;若不存在,请说明理由;(3)为轴上一点,过点作抛物线对称轴的垂线,垂足为,连接,探究是否存在最小值若存在,请求出这个最小值及点的坐标;若不存在,请说明理由 2(2021湖北十堰市中考真题)已知抛物线与x轴交于点和,与y轴交于
6、点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连交抛物线于M,连、(1)求抛物线的解析式;(2)如图1,当时,求M点的横坐标;(3)如图2,过点P作x轴的平行线l,过M作于D,若,求N点的坐标 3(2021湖北黄冈市中考真题)已知抛物线与x轴相交于,两点,与y轴交于点C,点是x轴上的动点(1)求抛物线的解析式;(2)如图1,若,过点N作x轴的垂线交抛物线于点P,交直线于点G过点P作于点D,当n为何值时,;(3)如图2,将直线绕点B顺时针旋转,使它恰好经过线段的中点,然后将它向上平移个单位长度,得到直线_;当点N关于直线的对称点落在抛物线上时,求点N的坐标 4(2021四川泸州市中考真题)
7、如图,在平面直角坐标系xOy中,抛物线与两坐标轴分别相交于A,B,C三点(1)求证:ACB=90(2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F求DE+BF的最大值;点G是AC的中点,若以点C,D,E为顶点的三角形与AOG相似,求点D的坐标 5(2021江苏连云港市中考真题)如图,抛物线与x轴交于点A、B,与y轴交于点C,已知(1)求m的值和直线对应的函数表达式;(2)P为抛物线上一点,若,请直接写出点P的坐标;(3)Q为抛物线上一点,若,求点Q的坐标 6(2020四川中考真题)如图1,抛物线yax22ax3a(a0)与x轴交于点A,B与y轴交于点C连接AC
8、,BC已知ABC的面积为2(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点过P,Q向x轴作垂线,垂足分别为G,H若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N (2,0)点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E连接AD并延长交MN于点F在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由7(2021辽宁中考真题)如图,已知点,点,直线过点B交y轴于点C,交x轴于点D,抛物线经过点A、C、D,连接、(1)求抛物线的表达式;(2)判断的形状,并说明理
9、由;(3)E为直线上方的抛物线上一点,且,求点E的坐标;(4)N为线段上的动点,动点P从点B出发,以每秒1个单位长度的速度沿线段运动到点N,再以每秒个单位长度的速度沿线段运动到点C,又以每秒1个单位长度的速度沿线段向点O运动,当点P运动到点O后停止,请直接写出上述运动时间的最小值及此时点N的坐标 8(2021上海中考真题)已知抛物线过点(1)求抛物线的解析式;(2)点A在直线上且在第一象限内,过A作轴于B,以为斜边在其左侧作等腰直角若A与Q重合,求C到抛物线对称轴的距离;若C落在抛物线上,求C的坐标9(2021内蒙古呼伦贝尔市中考真题)如图,直线与抛物线相交于点和点,抛物线与x轴的交点分别为H
10、,K(点H在点K的左侧)点F在线段上运动(不与点A、B重合),过点F作直线轴于点P,交抛物线于点C(1)求抛物线的解析式;(2)如图1,连接,是否存在点F,使是直角三角形?若存在,求出点F的坐标;若不存在,说明理由;(3)如图2,过点C作于点E,当的周长最大时,过点F作任意直线l,把沿直线l翻折,翻折后点C的对应点记为点Q,求出当的周长最大时,点F的坐标,并直接写出翻折过程中线段的最大值和最小值10(2021湖南湘西土家族苗族自治州中考真题)如图,已知抛物线经过,两点,交轴于点(1)求抛物线的解析式;(2)连接,求直线的解析式;(3)请在抛物线的对称轴上找一点,使的值最小,求点的坐标,并求出此
11、时的最小值;(4)点为轴上一动点,在抛物线上是否存在一点,使得以、四点为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,请说明理由11(2021辽宁大连市中考真题)已知函数,记该函数图像为G(1)当时,已知在该函数图像上,求n的值;当时,求函数G的最大值;(2)当时,作直线与x轴交于点P,与函数G交于点Q,若时,求m的值;(3)当时,设图像与x轴交于点A,与y轴交与点B,过B做交直线与点C,设点A的横坐标为a,C点的纵坐标为c,若,求m的值 12(2021贵州黔东南苗族侗族自治州中考真题)如图,抛物线与轴交于A、B(3,0)两点,与轴交于点C(0,3),抛物线的顶点为D(1)求抛物线
12、的解析式;(2)点P在抛物线的对称轴上,点Q在轴上,若以点P、Q、B、C为顶点,BC为边的四边形为平行四边形,请直接写出点P、Q的坐标;(3)已知点M是轴上的动点,过点M作的垂线交抛物线于点G,是否存在这样的点M,使得以点A、M、G为顶点的三角形与BCD相似,若存在,请求出点M的坐标;若不存在,请说明理由 13(2021吉林中考真题)如图,在平面直角坐标系中,二次函数的图象经过点,点(1)求此二次函数的解析式;(2)当时,求二次函数的最大值和最小值;(3)点为此函数图象上任意一点,其横坐标为,过点作轴,点的横坐标为已知点与点不重合,且线段的长度随的增大而减小求的取值范围;当时,直接写出线段与二
13、次函数的图象交点个数及对应的的取值范围 14(2021山东淄博市中考真题)如图,在平面直角坐标系中,抛物线与轴交于两点,与轴交于点,连接(1)若,求抛物线对应的函数表达式;(2)在(1)的条件下,点位于直线上方的抛物线上,当面积最大时,求点的坐标;(3)设直线与抛物线交于两点,问是否存在点(在抛物线上)点(在抛物线的对称轴上),使得以为顶点的四边形成为矩形?若存在,求出点的坐标;若不存在,说明理由15(2021内蒙古鄂尔多斯市中考真题)如图,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C(1)求A,B,C三点的坐标;(2)连接,直线与该抛物线交于点E,与交于点D,连接当时,求线段
14、的长;(3)点M在y轴上,点N在直线上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由 16(2021天津中考真题)在平面直角坐标系中,O为原点,是等腰直角三角形,顶点,点B在第一象限,矩形的顶点,点C在y轴的正半轴上,点D在第二象限,射线经过点B()如图,求点B的坐标;()将矩形沿x轴向右平移,得到矩形,点O,C,D,E的对应点分别为,设,矩形与重叠部分的面积为S如图,当点在x轴正半轴上,且矩形与重叠部分为四边形时,与相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;当时,求S的取值范围(直接写出
15、结果即可)17(2021内蒙古赤峰市中考真题)如图,抛物线与x轴交于、两点,对称轴l与x轴交于点F,直线mAC,过点E作EHm,垂足为H,连接AE、EC、CH、AH(1)抛物线的解析式为 ;(2)当四边形AHCE面积最大时,求点E的坐标;(3)在(2)的条件下,连接EF,点P在x轴上,在抛物线上是否存在点Q,使得以F、E、P、Q为顶点的四边形是平行四边形,请直接写出点Q的坐标;若不存在请说明理由 18(2021四川成都市中考真题)如图,在平面直角坐标系中,抛物线与x轴相交于O,A两点,顶点P的坐标为点B为抛物线上一动点,连接,过点B的直线与抛物线交于另一点C(1)求抛物线的函数表达式;(2)若
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-833897.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
