分享
分享赚钱 收藏 举报 版权申诉 / 30

类型专题24 与二次函数相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版).docx

  • 上传人:a****
  • 文档编号:833897
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:30
  • 大小:1.13MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题24 与二次函数相关的压轴题-三年2019-2021中考真题数学分项汇编全国通用原卷版 专题 24 二次 函数 相关 压轴 三年 2019 2021 中考 数学 汇编 全国 通用 原卷版
    资源描述:

    1、专题24 与二次函数相关的压轴题一、选填题1(2021湖北黄石市中考真题)二次函数(、是常数,且)的自变量与函数值的部分对应值如下表:01222且当时,对应的函数值有以下结论:;关于的方程的负实数根在和0之间;和在该二次函数的图象上,则当实数时,其中正确的结论是( )ABCD2(2021黑龙江大庆市中考真题)已知函数,则下列说法不正确的个数是( )若该函数图像与轴只有一个交点,则;方程至少有一个整数根若,则的函数值都是负数不存在实数,使得对任意实数都成立A0B1C2D33(2021湖北随州市中考真题)如图,已知抛物线的对称轴在轴右侧,抛物线与轴交于点和点,与轴的负半轴交于点,且,则下列结论:;

    2、当时,在轴下方的抛物线上一定存在关于对称轴对称的两点,(点在点左边),使得其中正确的有( )A1个B2个C3个D4个4(2021内蒙古呼和浩特市中考真题)已知二次项系数等于1的一个二次函数,其图象与x轴交于两点,且过,两点(b,a是实数),若,则的取值范围是()ABCD5(2021湖南岳阳市中考真题)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”如图,在正方形中,点,点,则互异二次函数与正方形有交点时的最大值和最小值分别是( )A4,-1B,-1C4,0D,-16(2021四川广元市中考真题)将二次函数的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示当直线

    3、与新函数的图象恰有3个公共点时,b的值为( )A或B或C或D或7(2021辽宁本溪市中考真题)如图,在矩形中,动点P沿折线运动到点B,同时动点Q沿折线运动到点C,点在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度设运动时间为t秒,的面积为S,则下列图象能大致反映S与t之间函数关系的是( )A BC D8(2021内蒙古通辽市中考真题)如图,在矩形中,动点P,Q同时从点A出发,点P沿ABC的路径运动,点Q沿ADC的路径运动,点P,Q的运动速度相同,当点P到达点C时,点Q也随之停止运动,连接设点P的运动路程为x,为y,则y关于x的函数图象大致是( )A B

    4、CD9(2021山东威海市中考真题)如图,在菱形ABCD中,点P,Q同时从点A出发,点P以1cm/s的速度沿ACD的方向运动,点Q以2cm/s的速度沿ABCD的方向运动,当其中一点到达D点时,两点停止运动设运动时间为x(s),的面积为y(cm2),则下列图象中能大致反映y与x之间函数关系的是( )ABCD10(2021黑龙江齐齐哈尔市中考真题)如图,抛物线的解析式为,点的坐标为,连接:过A1作,分别交y轴、抛物线于点、:过作,分别交y轴、抛物线于点、;过作,分别交y轴、抛物线于点、:按照如此规律进行下去,则点(n为正整数)的坐标是_11(2021广西来宾市中考真题)如图,已知点,两点,在抛物线

    5、上,向左或向右平移抛物线后,的对应点分别为,当四边形的周长最小时,抛物线的解析式为_二、解答题1(2021湖北恩施土家族苗族自治州中考真题)如图,在平面直角坐标系中,四边形为正方形,点,在轴上,抛物线经过点,两点,且与直线交于另一点(1)求抛物线的解析式;(2)为抛物线对称轴上一点,为平面直角坐标系中的一点,是否存在以点,为顶点的四边形是以为边的菱形若存在,请求出点的坐标;若不存在,请说明理由;(3)为轴上一点,过点作抛物线对称轴的垂线,垂足为,连接,探究是否存在最小值若存在,请求出这个最小值及点的坐标;若不存在,请说明理由 2(2021湖北十堰市中考真题)已知抛物线与x轴交于点和,与y轴交于

    6、点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连交抛物线于M,连、(1)求抛物线的解析式;(2)如图1,当时,求M点的横坐标;(3)如图2,过点P作x轴的平行线l,过M作于D,若,求N点的坐标 3(2021湖北黄冈市中考真题)已知抛物线与x轴相交于,两点,与y轴交于点C,点是x轴上的动点(1)求抛物线的解析式;(2)如图1,若,过点N作x轴的垂线交抛物线于点P,交直线于点G过点P作于点D,当n为何值时,;(3)如图2,将直线绕点B顺时针旋转,使它恰好经过线段的中点,然后将它向上平移个单位长度,得到直线_;当点N关于直线的对称点落在抛物线上时,求点N的坐标 4(2021四川泸州市中考真题)

    7、如图,在平面直角坐标系xOy中,抛物线与两坐标轴分别相交于A,B,C三点(1)求证:ACB=90(2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F求DE+BF的最大值;点G是AC的中点,若以点C,D,E为顶点的三角形与AOG相似,求点D的坐标 5(2021江苏连云港市中考真题)如图,抛物线与x轴交于点A、B,与y轴交于点C,已知(1)求m的值和直线对应的函数表达式;(2)P为抛物线上一点,若,请直接写出点P的坐标;(3)Q为抛物线上一点,若,求点Q的坐标 6(2020四川中考真题)如图1,抛物线yax22ax3a(a0)与x轴交于点A,B与y轴交于点C连接AC

    8、,BC已知ABC的面积为2(1)求抛物线的解析式;(2)平行于x轴的直线与抛物线从左到右依次交于P,Q两点过P,Q向x轴作垂线,垂足分别为G,H若四边形PGHQ为正方形,求正方形的边长;(3)如图2,平行于y轴的直线交抛物线于点M,交x轴于点N (2,0)点D是抛物线上A,M之间的一动点,且点D不与A,M重合,连接DB交MN于点E连接AD并延长交MN于点F在点D运动过程中,3NE+NF是否为定值?若是,求出这个定值;若不是,请说明理由7(2021辽宁中考真题)如图,已知点,点,直线过点B交y轴于点C,交x轴于点D,抛物线经过点A、C、D,连接、(1)求抛物线的表达式;(2)判断的形状,并说明理

    9、由;(3)E为直线上方的抛物线上一点,且,求点E的坐标;(4)N为线段上的动点,动点P从点B出发,以每秒1个单位长度的速度沿线段运动到点N,再以每秒个单位长度的速度沿线段运动到点C,又以每秒1个单位长度的速度沿线段向点O运动,当点P运动到点O后停止,请直接写出上述运动时间的最小值及此时点N的坐标 8(2021上海中考真题)已知抛物线过点(1)求抛物线的解析式;(2)点A在直线上且在第一象限内,过A作轴于B,以为斜边在其左侧作等腰直角若A与Q重合,求C到抛物线对称轴的距离;若C落在抛物线上,求C的坐标9(2021内蒙古呼伦贝尔市中考真题)如图,直线与抛物线相交于点和点,抛物线与x轴的交点分别为H

    10、,K(点H在点K的左侧)点F在线段上运动(不与点A、B重合),过点F作直线轴于点P,交抛物线于点C(1)求抛物线的解析式;(2)如图1,连接,是否存在点F,使是直角三角形?若存在,求出点F的坐标;若不存在,说明理由;(3)如图2,过点C作于点E,当的周长最大时,过点F作任意直线l,把沿直线l翻折,翻折后点C的对应点记为点Q,求出当的周长最大时,点F的坐标,并直接写出翻折过程中线段的最大值和最小值10(2021湖南湘西土家族苗族自治州中考真题)如图,已知抛物线经过,两点,交轴于点(1)求抛物线的解析式;(2)连接,求直线的解析式;(3)请在抛物线的对称轴上找一点,使的值最小,求点的坐标,并求出此

    11、时的最小值;(4)点为轴上一动点,在抛物线上是否存在一点,使得以、四点为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,请说明理由11(2021辽宁大连市中考真题)已知函数,记该函数图像为G(1)当时,已知在该函数图像上,求n的值;当时,求函数G的最大值;(2)当时,作直线与x轴交于点P,与函数G交于点Q,若时,求m的值;(3)当时,设图像与x轴交于点A,与y轴交与点B,过B做交直线与点C,设点A的横坐标为a,C点的纵坐标为c,若,求m的值 12(2021贵州黔东南苗族侗族自治州中考真题)如图,抛物线与轴交于A、B(3,0)两点,与轴交于点C(0,3),抛物线的顶点为D(1)求抛物线

    12、的解析式;(2)点P在抛物线的对称轴上,点Q在轴上,若以点P、Q、B、C为顶点,BC为边的四边形为平行四边形,请直接写出点P、Q的坐标;(3)已知点M是轴上的动点,过点M作的垂线交抛物线于点G,是否存在这样的点M,使得以点A、M、G为顶点的三角形与BCD相似,若存在,请求出点M的坐标;若不存在,请说明理由 13(2021吉林中考真题)如图,在平面直角坐标系中,二次函数的图象经过点,点(1)求此二次函数的解析式;(2)当时,求二次函数的最大值和最小值;(3)点为此函数图象上任意一点,其横坐标为,过点作轴,点的横坐标为已知点与点不重合,且线段的长度随的增大而减小求的取值范围;当时,直接写出线段与二

    13、次函数的图象交点个数及对应的的取值范围 14(2021山东淄博市中考真题)如图,在平面直角坐标系中,抛物线与轴交于两点,与轴交于点,连接(1)若,求抛物线对应的函数表达式;(2)在(1)的条件下,点位于直线上方的抛物线上,当面积最大时,求点的坐标;(3)设直线与抛物线交于两点,问是否存在点(在抛物线上)点(在抛物线的对称轴上),使得以为顶点的四边形成为矩形?若存在,求出点的坐标;若不存在,说明理由15(2021内蒙古鄂尔多斯市中考真题)如图,抛物线与x轴交于A,B两点(点A在点B左侧),与y轴交于点C(1)求A,B,C三点的坐标;(2)连接,直线与该抛物线交于点E,与交于点D,连接当时,求线段

    14、的长;(3)点M在y轴上,点N在直线上,点P为抛物线对称轴上一点,是否存在点M,使得以C、M、N、P为顶点的四边形是菱形?若存在,请直接写出点M的坐标;若不存在,请说明理由 16(2021天津中考真题)在平面直角坐标系中,O为原点,是等腰直角三角形,顶点,点B在第一象限,矩形的顶点,点C在y轴的正半轴上,点D在第二象限,射线经过点B()如图,求点B的坐标;()将矩形沿x轴向右平移,得到矩形,点O,C,D,E的对应点分别为,设,矩形与重叠部分的面积为S如图,当点在x轴正半轴上,且矩形与重叠部分为四边形时,与相交于点F,试用含有t的式子表示S,并直接写出t的取值范围;当时,求S的取值范围(直接写出

    15、结果即可)17(2021内蒙古赤峰市中考真题)如图,抛物线与x轴交于、两点,对称轴l与x轴交于点F,直线mAC,过点E作EHm,垂足为H,连接AE、EC、CH、AH(1)抛物线的解析式为 ;(2)当四边形AHCE面积最大时,求点E的坐标;(3)在(2)的条件下,连接EF,点P在x轴上,在抛物线上是否存在点Q,使得以F、E、P、Q为顶点的四边形是平行四边形,请直接写出点Q的坐标;若不存在请说明理由 18(2021四川成都市中考真题)如图,在平面直角坐标系中,抛物线与x轴相交于O,A两点,顶点P的坐标为点B为抛物线上一动点,连接,过点B的直线与抛物线交于另一点C(1)求抛物线的函数表达式;(2)若

    16、点B的横坐标与纵坐标相等,且点C位于x轴上方,求点C的坐标;(3)若点B的横坐标为t,请用含t的代数式表示点C的横坐标,并求出当时,点C的横坐标的取值范围 19(2021广西贵港市中考真题)如图,已知抛物线yax2bxc与x轴相交于A(3,0),B两点,与y轴相交于点C(0,2),对称轴是直线x1,连接AC(1)求该抛物线的表达式;(2)若过点B的直线l与抛物线相交于另一点D,当ABDBAC时,求直线l的表达式;(3)在(2)的条件下,当点D在x轴下方时,连接AD,此时在y轴左侧的抛物线上存在点P,使,请直接写出所有符合条件的点P的坐标 20(2021四川雅安市中考真题)已知二次函数(1)当该

    17、二次函数的图象经过点时,求该二次函数的表达式;(2)在(1) 的条件下,二次函数图象与x轴的另一个交点为点B,与y轴的交点为点C,点P从点A出发在线段AB上以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求BPQ面积的最大值;(3)若对满足的任意实数x,都使得成立,求实数b的取值范围21(2021辽宁营口市中考真题)如图,在平面直角坐标系中,抛物线过点,点C为第二象限抛物线上一点,连接,其中与x轴交于点E,且(1)求点C坐标;(2)点为线段上一动点(P不与B,E重合),过点P作平行于y轴的直线l与的边

    18、分别交于M,N两点,将沿直线翻折得到,设四边形的面积为S,在点P移动过程中,求S与m的函数关系式;(3)在(2)的条件下,若,请直接写出所有满足条件的m值22(2021江苏常州市中考真题)如图,在平面直角坐标系中,正比例函数和二次函数的图像都经过点和点B,过点A作的垂线交x轴于点CD是线段上一点(点D与点A、O、B不重合),E是射线上一点,且,连接,过点D作x轴的垂线交抛物线于点F,以、为邻边作(1)填空:_,_;(2)设点D的横坐标是,连接若,求t的值;(3)过点F作的垂线交线段于点P若,求的长23(2021山东东营市中考真题)如图,抛物线与轴交于A、B两点,与轴交于点C,直线过B、C两点,

    19、连接AC(1)求抛物线的解析式;(2)求证:;(3)点是抛物线上的一点,点D为抛物线上位于直线BC上方的一点,过点D作轴交直线BC于点E,点P为抛物线对称轴上一动点,当线段DE的长度最大时,求的最小值24(2021辽宁本溪市中考真题)如图,抛物线与x轴交于点A和点,与y轴交于点,连接,点P是抛物线第一象限上的一动点,过点P作轴于点D,交于点E(1)求抛物线的解析式;(2)如图1,作于点P,使,以,为邻边作矩形当矩形的面积是面积的3倍时,求点P的坐标;(3)如图2,当点P运动到抛物线的顶点时,点Q在直线上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围25(2021

    20、海南中考真题)已知抛物线与x轴交于两点,与y轴交于C点,且点A的坐标为、点C的坐标为(1)求该抛物线的函数表达式;(2)如图1,若该抛物线的顶点为P,求的面积;(3)如图2,有两动点在的边上运动,速度均为每秒1个单位长度,它们分别从点C和点B同时出发,点D沿折线按方向向终点B运动,点E沿线段按方向向终点C运动,当其中一个点到达终点时,另一个点也随之停止运动设运动时间为t秒,请解答下列问题:当t为何值时,的面积等于;在点运动过程中,该抛物线上存在点F,使得依次连接得到的四边形是平行四边形,请直接写出所有符合条件的点F的坐标26(2021山东枣庄市中考真题)如图,在平面直角坐标系中,直线与轴交于点

    21、,与轴交于点,抛物线经过坐标原点和点,顶点为点(1)求抛物线的关系式及点的坐标;(2)点是直线下方的抛物线上一动点,连接,当的面积等于时,求点的坐标;(3)将直线向下平移,得到过点的直线,且与轴负半轴交于点,取点,连接,求证:27(2021广西柳州市中考真题)在平面直角坐标系中,已知抛物线:交x轴于两点,与y轴交于点(1)求抛物线的函数解析式;(2)如图1,点D为第四象限抛物线上一点,连接,过点B作,垂足为E,若,求点D的坐标;(3)如图2,点M为第四象限抛物线上一动点,连接,交于点N,连接,记的面积为,的面程为,求的最大值28(2021山东菏泽市中考真题)如图,在平面直角坐标系中,已知抛物线

    22、交轴于,两点,交轴于点(1)求该抛物线的表达式;(2)点为第四象限内抛物线上一点,连接,过点作交轴于点,连接,求面积的最大值及此时点的坐标;(3)在(2)的条件下,将抛物线向右平移经过点时,得到新抛物线,点在新抛物线的对称轴上,在坐标平面内是否存在一点,使得以、为顶点的四边形为矩形,若存在,请直接写出点的坐标;若不存在,请说明理由参考:若点、,则线段的中点的坐标为 29(2021内蒙古呼和浩特市中考真题)已知抛物线(1)通过配方可以将其化成顶点式为_,根据该抛物线在对称轴两侧从左到右图象的特征,可以判断,当顶点在x轴_(填上方或下方),即_0(填大于或小于)时,该抛物线与x轴必有两个交点;(2

    23、)若抛物线上存在两点,分布在x轴的两侧,则抛物线顶点必在x轴下方,请你结合A、B两点在抛物线上的可能位置,根据二次函数的性质,对这个结论的正确性给以说明;(为了便于说明,不妨设且都不等于顶点的横坐标;另如果需要借助图象辅助说明,可自己画出简单示意图)(3)利用二次函数(1)(2)结论,求证:当,时, 30(2021湖北黄石市中考真题)抛物线()与轴相交于点,且抛物线的对称轴为,为对称轴与轴的交点(1)求抛物线的解析式;(2)在轴上方且平行于轴的直线与抛物线从左到右依次交于、两点,若是等腰直角三角形,求的面积;(3)若是对称轴上一定点,是抛物线上的动点,求的最小值(用含的代数式表示)31(202

    24、1黑龙江齐齐哈尔市中考真题)综合与探究如图,在平面直角坐标系中,抛物线与x轴交于点A、B,与y轴交于点C,连接BC,对称轴为,点D为此抛物线的顶点(1)求抛物线的解析式;(2)抛物线上C,D两点之间的距离是_;(3)点E是第一象限内抛物线上的动点,连接BE和CE求面积的最大值;(4)点P在抛物线对称轴上,平面内存在点Q,使以点B、C、P、Q为顶点的四边形为矩形,请直接写出点Q的坐标 32(2021湖北中考真题)如图1,已知,中,动点P从点A出发,以的速度在线段上向点C运动,分别与射线交于E,F两点,且,当点P与点C重合时停止运动,如图2,设点P的运动时间为,与的重叠部分面积为,y与x的函数关系

    25、由和两段不同的图象组成(1)填空:当时,_;_;(2)求y与x的函数关系式,并写出x的取值范围;(3)当时,请直接写出x的取值范围33(2021吉林长春市中考真题)在平面直角坐标系中,抛物线(m为常数)的顶点为A(1)当时,点A的坐标是 ,抛物线与y轴交点的坐标是 (2)若点A在第一象限,且,求此抛物线所对应的二次函数的表达式,并写出函数值y随x的增大而减小时x的取值范围(3)当时,若函数的最小值为3,求m的值(4)分别过点、作y轴的垂线,交抛物线的对称轴于点M、N当抛物线与四边形PQNM的边有两个交点时,将这两个交点分别记为点B、点C,且点B的纵坐标大于点C的纵坐标若点B到y轴的距离与点C到

    26、x轴的距离相等,直接写出m的值34(2021青海中考真题)如图,在平面直角坐标系中,直线与坐标轴交于两点,点在轴上,点在轴上,点的坐标为,抛物线经过点(1)求抛物线的解析式;(2)根据图象写出不等式的解集;(3)点是抛物线上的一动点,过点作直线的垂线段,垂足为点,当时,求P点的坐标35(2021广西贺州市中考真题)如图,抛物线与轴交于、两点,且,对称轴为直线(1)求该抛物线的函数达式;(2)直线过点且在第一象限与抛物线交于点当时,求点的坐标;(3)点在抛物线上与点关于对称轴对称,点是抛物线上一动点,令,当,时,求面积的最大值(可含表示)36(2021湖北荆州市中考真题)小爱同学学习二次函数后,

    27、对函数进行了探究,在经历列表、描点、连线步骤后,得到如下的函数图像请根据函数图象,回答下列问题:(1)观察探究:写出该函数的一条性质:_;方程的解为:_;若方程有四个实数根,则的取值范围是_(2)延伸思考:将函数的图象经过怎样的平移可得到函数的图象?写出平移过程,并直接写出当时,自变量的取值范围37(2021内蒙古通辽市中考真题)如图,抛物线交x轴于,两点,交y轴于点C,动点P在抛物线的对称轴上(1)求抛物线的解析式;(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及的周长;(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直

    28、接写出所有符合条件的点Q的坐标;若不存在,请说明理由38(2021江苏盐城市中考真题)学习了图形的旋转之后,小明知道,将点绕着某定点顺时针旋转一定的角度,能得到一个新的点经过进一步探究,小明发现,当上述点在某函数图像上运动时,点也随之运动,并且点的运动轨迹能形成一个新的图形试根据下列各题中所给的定点的坐标和角度的大小来解决相关问题 (初步感知)如图1,设,点是一次函数图像上的动点,已知该一次函数的图像经过点(1)点旋转后,得到的点的坐标为_;(2)若点的运动轨迹经过点,求原一次函数的表达式(深入感悟)(3)如图2,设,点反比例函数的图像上的动点,过点作二、四象限角平分线的垂线,垂足为,求的面积

    29、(灵活运用)(4)如图3,设A,点是二次函数图像上的动点,已知点、,试探究的面积是否有最小值?若有,求出该最小值;若没有,请说明理由 39(2021湖南张家界市中考真题)如图,已知二次函数的图象经过点且与轴交于原点及点(1)求二次函数的表达式;(2)求顶点的坐标及直线的表达式;(3)判断的形状,试说明理由;(4)若点为上的动点,且的半径为,一动点从点出发,以每秒2个单位长度的速度沿线段匀速运动到点,再以每秒1个单位长度的速度沿线段匀速运动到点后停止运动,求点的运动时间的最小值40(2021黑龙江鹤岗市中考真题)如图,在平面直角坐标系中,的边在轴上,且线段的长是方程的根,过点作轴,垂足为,动点以

    30、每秒1个单位长度的速度,从点出发,沿线段向点运动,到达点停止过点作轴的垂线,垂足为,以为边作正方形,点在线段上,设正方形与重叠部分的面积为,点的运动时间为秒(1)求点的坐标;(2)求关于的函数关系式,并写出自变量的取值范围;(3)当点落在线段上时,坐标平面内是否存在一点,使以为顶点的四边形是平行四边形?若存在,直接写出点的坐标;若不存在,请说明理由41(2021湖南中考真题)已知函数的图象如图所示,点在第一象限内的函数图象上(1)若点也在上述函数图象上,满足当时,求的值;若,设,求w的最小值;(2)过A点作y轴的垂线,垂足为P,点P关于x轴的对称点为,过A点作x轴的线,垂足为Q,Q关于直线的对

    31、称点为,直线是否与y轴交于某定点?若是,求出这个定点的坐标;若不是,请说明理由42(2021黑龙江中考真题)如图,已知抛物线与轴交于点,点,(点在点的左边),与轴交于点,点为抛物线的顶点,连接直线经过点,且与轴交于点(1)求抛物线的解析式;(2)点是抛物线上的一点,当是以为腰的等腰三角形时,求点的坐标;(3)点为线段上的一点,点为线段上的一点,连接,并延长与线段交于点(点在第一象限)当且时,求出点的坐标43(2021江苏无锡市中考真题)在平面直角坐标系中,O为坐标原点,直线与x轴交于点B,与y轴交于点C,二次函数的图象过B、C两点,且与x轴交于另一点A,点M为线段上的一个动点,过点M作直线l平行于y轴交于点F,交二次函数的图象于点E(1)求二次函数的表达式;(2)当以C、E、F为顶点的三角形与相似时,求线段的长度;(3)已知点N是y轴上的点,若点N、F关于直线对称,求点N的坐标 44(2021湖南娄底市中考真题)如图,在直角坐标系中,二次函数的图象与x轴相交于点和点,与y轴交于点C(1)求的值;(2)点为抛物线上的动点,过P作x轴的垂线交直线于点Q当时,求当P点到直线的距离最大时m的值;是否存在m,使得以点为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题24 与二次函数相关的压轴题-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版).docx
    链接地址:https://www.ketangku.com/wenku/file-833897.html
    相关资源 更多
  • 人教版一年级下学期期末质量监测数学试题及参考答案【预热题】.docx人教版一年级下学期期末质量监测数学试题及参考答案【预热题】.docx
  • 人教版一年级下学期期末质量监测数学试题及参考答案【突破训练】.docx人教版一年级下学期期末质量监测数学试题及参考答案【突破训练】.docx
  • 人教版一年级下学期期末质量监测数学试题及参考答案【夺分金卷】.docx人教版一年级下学期期末质量监测数学试题及参考答案【夺分金卷】.docx
  • 人教版一年级下学期期末质量监测数学试题及参考答案【典型题】.docx人教版一年级下学期期末质量监测数学试题及参考答案【典型题】.docx
  • 人教版一年级下学期期末质量监测数学试题及参考答案【a卷】.docx人教版一年级下学期期末质量监测数学试题及参考答案【a卷】.docx
  • 人教版一年级下学期期末质量监测数学试题及免费答案.docx人教版一年级下学期期末质量监测数学试题及免费答案.docx
  • 人教版一年级下学期期末质量监测数学试题及下载答案.docx人教版一年级下学期期末质量监测数学试题及下载答案.docx
  • 人教版一年级下学期期末质量监测数学试题及一套完整答案.docx人教版一年级下学期期末质量监测数学试题及一套完整答案.docx
  • 人教版一年级下学期期末质量监测数学试题及1套参考答案.docx人教版一年级下学期期末质量监测数学试题及1套参考答案.docx
  • 人教版一年级下学期期末质量监测数学试题加答案下载.docx人教版一年级下学期期末质量监测数学试题加答案下载.docx
  • 人教版一年级下学期期末质量监测数学试题免费答案.docx人教版一年级下学期期末质量监测数学试题免费答案.docx
  • 人教版一年级下学期期末质量监测数学试题【重点班】.docx人教版一年级下学期期末质量监测数学试题【重点班】.docx
  • 人教版一年级下学期期末质量监测数学试题【重点】.docx人教版一年级下学期期末质量监测数学试题【重点】.docx
  • 人教版一年级下学期期末质量监测数学试题【综合题】.docx人教版一年级下学期期末质量监测数学试题【综合题】.docx
  • 人教版一年级下学期期末质量监测数学试题【精选题】.docx人教版一年级下学期期末质量监测数学试题【精选题】.docx
  • 人教版一年级下学期期末质量监测数学试题【精华版】.docx人教版一年级下学期期末质量监测数学试题【精华版】.docx
  • 人教版一年级下学期期末质量监测数学试题【有一套】.docx人教版一年级下学期期末质量监测数学试题【有一套】.docx
  • 人教版一年级下学期期末质量监测数学试题【最新】.docx人教版一年级下学期期末质量监测数学试题【最新】.docx
  • 人教版一年级下学期期末质量监测数学试题【巩固】.docx人教版一年级下学期期末质量监测数学试题【巩固】.docx
  • 人教版一年级下学期期末质量监测数学试题【实验班】.docx人教版一年级下学期期末质量监测数学试题【实验班】.docx
  • 人教版一年级下学期期末质量监测数学试题【完整版】.docx人教版一年级下学期期末质量监测数学试题【完整版】.docx
  • 人教版一年级下学期期末质量监测数学试题【夺冠系列】.docx人教版一年级下学期期末质量监测数学试题【夺冠系列】.docx
  • 人教版一年级下学期期末质量监测数学试题【夺冠】.docx人教版一年级下学期期末质量监测数学试题【夺冠】.docx
  • 人教版一年级下学期期末质量监测数学试题【基础题】.docx人教版一年级下学期期末质量监测数学试题【基础题】.docx
  • 人教版一年级下学期期末质量监测数学试题【培优b卷】.docx人教版一年级下学期期末质量监测数学试题【培优b卷】.docx
  • 人教版一年级下学期期末质量监测数学试题【培优a卷】.docx人教版一年级下学期期末质量监测数学试题【培优a卷】.docx
  • 人教版一年级下学期期末质量监测数学试题【名校卷】.docx人教版一年级下学期期末质量监测数学试题【名校卷】.docx
  • 人教版一年级下学期期末质量监测数学试题【名师系列】.docx人教版一年级下学期期末质量监测数学试题【名师系列】.docx
  • 人教版一年级下学期期末质量监测数学试题【各地真题】.docx人教版一年级下学期期末质量监测数学试题【各地真题】.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1