专题26.1 反比例函数(知识讲解)-2022-2023学年九年级数学下册基础知识专项讲练(人教版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题26.1 反比例函数知识讲解-2022-2023学年九年级数学下册基础知识专项讲练人教版 专题 26.1 反比例 函数 知识 讲解 2022 2023 学年 九年级 数学 下册 基础知识 专项
- 资源描述:
-
1、专题26.1 反比例函数(知识讲解)【学习目标】1. 理解反比例函数的概念和意义;2. 能根据问题的反比例关系确定函数解析式【要点梳理】要点一、反比例函数的定义如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即,或表示为,其中是不等于零的常数.一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.特别说明:(1)在中,自变量是分式的分母,当时,分式无意义,所以自变量的取值范围是,函数的取值范围是.故函数图象与轴、轴无交点.(2) ()可以写成()的形式,自变量的指数是1,在解决有关自变量指数问题时应特别注意
2、系数这一条件.(3) ()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数,从而得到反比例函数的解析式.以上三种表达式可据实际情况,恰当选择表达式会给我们解题带来很多方便。要点二、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式.用待定系数法求反比例函数关系式的一般步骤是:(1)设所求的反比例函数为: ();(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数的值;(4)把求得的值代回所设的函数关系式 中.【
3、典型例题】类型一、反比例函数中变量关系1 用解析式表示下列函数(1)三角形的面积是,它的一边a(单位:)是这边上的高h(单位:)的函数;(2)圆锥的体积是,它的高h(单位:)是底面面积S(单位:)的函数【答案】(1);(2)【分析】(1)根据三角形的面积公式写出解析式即可;(2)根据圆锥的体积公式写出解析式即可解:(1)(2)【点拨】本题考查了反比例函数表达式,掌握相关公式以及函数知识是解题的关键举一反三:【变式1】计划修建铁路,那么铺轨天数是每日铺轨量的反比例函数吗?【答案】,y是x的反比例函数【分析】铺轨天数铁路长每日铺轨量,把相关数值代入即可得到与之间的函数关系式,根据反比例函数的一般形
4、式判断是否为反比例函数即可解:铺轨天数铁路长每天铺轨量,是的反比例函数【点拨】本题考查反比例函数的定义,反比例函数解析式的一般形式为,关键是得到与之间的函数关系式【变式2】用函数解析式表示下列问题中变量间的对应关系:(1)一个游泳池的容积为,游泳池注满水所用时间t(单位:h)随注水速度v(单位:)的变化而变化;(2)某长方体的体积为,长方体的高h(单位:)随底面积S(单位:)的变化而变化;(3)一个物体重,物体对地面的压强p(单位:)随物体与地面的接触面积S(单位:)的变化而变化【答案】(1);(2);(3)【分析】(1)根据游泳池的容积=游泳池注满水所用时间注水速度解答即可;(2)根据长方体
5、的体积=长方体的底面积高求解即可;(3)根据物体对地面的压强=物体重量物体与地面的接触面积解答即可解:(1)根据vt=2000得:游泳池注满水所用时间;(2)根据1000=Sh得:长方体的高;(3)根据题意,物体对地面的压强【点拨】本题考查反比例函数的应用,正确得出函数关系式是解答的关键类型二、反比例函数的识别2 下列哪些关系式中的y是x的反比例函数?,【答案】,【分析】根据反比例函数的定义,反比例函数的一般式是y(k0),可以判定函数的类型解:y4x不是反比例函数,不是反比例函数,是反比例函数,y6x1不是反比例函数,不是反比例函数,不是反比例函数,由xy123,可得: ,所以xy123是反
6、比例函数综上:y是x的反比例函数的有:,【点拨】本题考查了反比例函数的定义,重点是掌握反比例函数解析式的形式为y(k为常数,k0)或yk(k为常数,k0)举一反三:【变式1】 如果是的反比例函数,那么也是的反比例函数吗?【答案】是,理由见详解【分析】根据反比例函数的定义进行解答即可解:如果是的反比例函数,那么也是的的反比例函数理由如下:若是的反比例函数,则,可得:,所以也是的反比例函数【点拨】本题考查了反比例函数的定义:反比例函数解析式的一般形式,也可转化为的形式,特别注意不要忽略这个条件【变式2】写出下列问题中两个变量之间的函数表达式,并判断其是不是反比例函数(1)底边为 3cm 的三角形的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-834091.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
有关下发县育才路建设项目贯彻落实“三重一大”决策制度实施细则.pdf
